ChemComm
Communication
Guiping Yuan of the Analysis and Testing Center of Sichuan
University for helping us to process variable temperature NMR
and TEM images.
Notes and references
1 J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304.
2 (a) S. I. Stupp, V. L. Bonheur, K. Walker, L. S. Li, K. E. Huggins,
M. Keser and A. Amstutz, Science, 1997, 276, 384; (b) D. C. Sherrington
and K. A. Taskinen, Chem. Soc. Rev., 2001, 30, 83; (c) J. M. Lehn,
Polym. Int., 2002, 51, 825.
3 T. Aida, E. W. Meijer and S. I. Stupp, Science, 2012, 335, 813.
4 (a) J. C. Nelson, J. G. Saven, J. S. Moore and P. G. Wolynes, Science, 1997,
277, 1793; (b) D. T. Bong, T. D. Clark, J. R. Granja and M. R. Ghadiri,
Angew. Chem., Int. Ed., 2001, 40, 988; (c) L. P. Ruan, H. Y. Zhang,
H. L. Luo, J. P. Liu, F. S. Tang, Y. K. Shi and X. J. Zhao, Proc. Natl. Acad.
Sci. U. S. A., 2009, 106, 5105; (d) Z. Nie, A. Petukhova and E. Kumacheva,
Nat. Nanotechnol., 2010, 5, 15; (e) P. K. Lo, K. L. Metera and H. F. Sleiman,
Curr. Opin. Chem. Biol., 2010, 14, 597; ( f ) P. X. Guo, Nat. Nanotechnol.,
2010, 5, 833; (g) W. W. Grabow, P. Zakrevsky, K. A. Afonin, A. Chworos,
B. A. Shapiro and L. Jaeger, Nano Lett., 2011, 11, 878.
Fig. 2 Hierarchical self-assembly of compound 1. (A) Six-membered super-
macrocycle assembly of Janus molecules was constructed by H-bonds; (B) nano-
tubes were formed by stacking between layers (top views); (C) side views of the
nanotubes (n = 12); (D) variation of energy per layer (E/n) with layer (n) stacking.
5 (a) N. C. Seeman, Nature, 2003, 421, 427; (b) U. Feldkamp and
C. M. Niemeyer, Angew. Chem., Int. Ed., 2006, 45, 1856; (c) D. Y. Yang,
M. J. Campolongo, T. N. N. Tran, R. C. H. Ruiz, J. S. Kahn and D. Luo,
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2010, 2, 648;
(d) O. S. Lee and G. C. Schatz, Adv. Chem. Phys., 2012, 149, 197.
6 (a) Y. J. Yun, S. M. Park and B. H. Kim, Chem. Commun., 2003, 254;
(b) J. T. Davis and G. P. Spada, Chem. Soc. Rev., 2007, 36, 296;
(c) J. Sawayama, H. Sakaino, S. Kabashima, I. Yoshikawa and
K. Araki, Langmuir, 2011, 27, 8653.
7 (a) J. L. Sessler, J. Jayawickramarajah, M. Sathiosatham,
C. L. Sherman and J. S. Brodbelt, Org. Lett., 2003, 5, 2627;
(b) F. Seela, T. Wiglenda, H. Rosemeyer, H. Eickmeier and
H. Reuter, Angew. Chem., Int. Ed., 2002, 41, 603; (c) J. T. Davis, Angew.
Chem., Int. Ed., 2004, 43, 668; (d) C. M. Niemeyer and M. Adler, Angew.
Chem., Int. Ed., 2002, 41, 3779; (e) S. L. Forman, J. C. Fettinger,
S. Pieraccini, G. Gottarelli and J. T. Davis, J. Am. Chem. Soc., 2000,
122, 4060; ( f ) M. S. Kaucher, W. A. Harrell and J. T. Davis, J. Am.
Chem. Soc., 2006, 128, 38; (g) D. Jiang and F. Seela, J. Am. Chem. Soc.,
2010, 132, 4016; (h) A. Marsh, M. Silvestri and J. M. Lehn, Chem.
Commun., 1996, 1527; (i) R. S. Johnson, T. Yamazaki, A. Kovalenko
and H. Fenniri, J. Am. Chem. Soc., 2007, 129, 5735.
8 (a) L. Zhang, J. Rodriguez, J. Raez, A. J. Myles, H. Fenniri and T. J.
Webster, Nanotechnology, 2009, 20, 1; (b) L. Zhang, F. Rakotondradany,
A. J. Myles, H. Fenniri and T. J. Webster, Biomaterials, 2009, 30, 1309;
(c) Y. Chen, B. Bilgen, R. A. Pareta, A. J. Myles, H. Fenniri, D. M. Ciombor,
R. K. Aaron and T. J. Webster, Tissue Eng., Part C, 2010, 16, 1233.
9 (a) H. Z. Yang, M. Y. Pan, D. W. Jiang and Y. He, Org. Biomol. Chem., 2011,
9, 1516; (b) H. Zhao, W. Huang, X. Wu, Y. Qing, Z. Xing and Y. He, Chem.
Lett., 2011, 684; (c) H. Zhao, W. Huang, X. Wu, Z. Xing, Y. He and Q. Chen,
Chem. Commun., 2012, 48, 6097; (d) M. Pan, W. Hang, X. Zhao, H. Zhao,
P. Deng, Z. Xing, Y. Qing and Y. He, Org. Biomol. Chem., 2011, 9, 5692.
10 Y. Tominaga, S. Ohno, S. Kohra, H. Fujito and H. Mazurae,
J. Heterocycl. Chem., 1991, 28, 1039.
11 (a) T. Azuma and K. Isono, J. Chem. Soc., Chem. Commun., 1977, 159; (b) M.
Imazawa and F. Eckstein, J. Org. Chem., 1979, 44, 2039; (c) H. Vorbrueggen,
K. Krolikiewicz and B. Bennua, Chem. Ber., 1981, 114, 1234.
12 J. H. van de Sande, N. B. Ramsing, M. W. Germann, W. Elhorst,
B. W. Kalisch, E. Von Kitzing, R. T. Pon, R. C. Clegg and T. M. Jovin,
Science, 1988, 241, 551.
13 (a) X. Ming, P. Ding, P. Leonard, S. Budowa and F. Seelar, Org. Biomol.
Chem., 2012, 10, 1861; (b) H. Sugiyama, S. Ikeda and I. Saito, J. Am. Chem.
Soc., 1996, 118, 9994; (c) F. Seela, Y. He and C. Wei, Tetrahedron, 1999,
55, 9481; (d) V. R. Parvathy, S. R. Bhaumik, K. V. R. Chary, G. Govil,
K. Liu, F. B. Howard and T. Miles, Nucleic Acids Res., 2002, 30, 1500.
14 (a) M. C. Chang, T. Ikoma, M. Kikuchi and J. Tanaka, J. Mater. Sci.:
Mater. Med., 2002, 13, 993; (b) M. C. Changa and J. Tanaka,
Biomaterials, 2002, 23, 3879.
pairs (Fig. 2A and Fig. S25, ESI†). Secondly, these six-membered
rings stacked layer by layer to form rosette nanotubes (Fig. 2B
and C). The calculations at the ff03 force-field level were performed
for the stacking up to n = 12 layers, showing that the stacking leads
to extra stability for the rosette nanotubes (Fig. 2D and Fig. S26,
ESI†) and the elongation of these nanotubes is energetically favour-
able. Previously, the GC base derivatives were reported by Fenniri
and coworkers to form B10% nanobundles by nanotubes. Here we
have found that nearly 100% of nanotubes associate to form higher
ordered nano-bundles. The difference is obviously due to the
presence of sugars attached to the base, which will introduce
additional hydrogen bonds between adjacent nanotubes. The
hollow structure of nanotubes together with the densely packed
nano-bundle networks formed by nucleosides 1–3 may have potential
to be used for drug delivery systems and biomaterial engineering.
In summary, we have developed a viable route to synthesize the
new pyrimido[4,5-d]pyrimidine Janus-type TA ribonucleoside (1–3) by
transglycosylation reactions. Albeit J-AT and J-TA (1) have the identical
two-faced H-bond arrays and the same sugar counterparts, the subtle
translocation of the ribose from N8 to N1 (by about 230 pm in space)
leads to the formation of drastically different shaped superstructures,
micro-flowers for J-AT and nano-bundles for J-TA (1–3). Previously, we
have shown that the modifications of base moieties can change the
superstructures of these Janus-type nucleosides.9c The current pheno-
menon indicates that not only the base pair but the spatial arrange-
ment of the sugar is also a deterministic factor to direct the three
dimensional superstructure shapes. Based on these findings, we
believe that, by further fine-tuning the structural parameters of these
Janus-type nucleosides such as the functional groups, the torsion
angle of the glycosyl bond (anti- or syn-conformation), the sugar
puckering mode (North- or South-conformation), etc., more beauties
and complexities of the macro-world can be reproduced and find
certain applications in the micro- or nano-world. These experimental
and theoretical studies are currently under intensive investigations
and will be published in the near future.
15 (a) R. Chhabra, J. G. Moralez and H. Fenniri, J. Am. Chem. Soc., 2010,
132, 32; (b) H. Fenniri, B. L. Deng and A. E. Ribbe, J. Am. Chem. Soc., 2002,
124, 11064; (c) G. Borzsonyi, R. L. Beingessner, T. Yamazaki, J. Y. Cho,
A. J. Myles, M. Malac, R. Egerton, M. Kawasaki, K. Ishizuka, A. Kovalenko
and H. Fenniri, J. Am. Chem. Soc., 2010, 132, 15136; (d) H. Fenniri,
P. Mathivanan, K. L. Vidale, D. M. Sherman, K. Hallenga, K. V. Wood and
J. G. Stowell, J. Am. Chem. Soc., 2001, 123, 3854.
We thank the National Natural Science Foundations of China
(document no: 20772087, 81061120531, 30930100), ISTCPC
(2012DFA31370) and the Open Foundation (SKLODSCUKF2012-04)
from the State Key Laboratory of Oral Diseases Sichuan University
for the financial support. We also thank Xiaoyan Wang and
c
3744 Chem. Commun., 2013, 49, 3742--3744
This journal is The Royal Society of Chemistry 2013