2590
M. G. de Miranda et al. / Tetrahedron Letters 54 (2013) 2587–2590
(1a) and 1-1-(2-(dihexylamino)anthracen-1-yl)ethanone (1i) in
85% and 83% yields, respectively (Scheme 3).
When the Friedel–Crafts acylation was repeated at a higher
temperature of 40 °C, a separable mixture of two equal isomers
of 1-(6-(dihexylamino)anthracen-1-yl)propan-1-one (1b) and
compounds with 1,2-dipolar, 1,6-dipolar, and 1,7-dipolar anthra-
cene fluorophores by a simple and straightforward synthesis.
These compounds have a bathochromic shifted absorption and
emission when compared to anthracene. The new fluorophores re-
tain the same absorption and emission properties observed with
Anthradan.
1-(7-(dihexylamino)anthracen-1-yl)propan-1-one
(1c),
were
obtained in 46% yield. We also obtained 45% each of 1-(6-
(dihexylamino)anthracen-1-yl)ethanone (1g) and 1-(7-(dihexyla-
mino)anthracen-1-yl)ethanone (1h), (Scheme 4).
To demonstrate their potential, the isomeric mixtures of
1-(6-(dihexylamino)anthracen-1-yl)propan-1-one (1b):1-(7-
(dihexylamino)anthracen-1-yl)propan-1-one (1c), and 1-(6-
However, when N,N-dihexylanthracen-2-amine (2) was treated
with more reactive electrophiles such as trifluoroacetic anhydride
or pentafluorbenzoyl chloride and aluminum chloride at 0–40 °C,
(dihexylamino)anthracen-1-yl)ethanone
no)anthracen-1-yl)ethanone (1h) were used in a formulation of
two invisible inks to mark currency notes and paper.
(1g):1-(7-(dihexylami-
we obtained only
a single regioselective acylation of 1-(2-
(dihexylamino)anthracen-1-yl)-2,2,2-trifluoroethanone (1f) and
(2-(dihexylamino)anthracen-1-yl)(perfluorophenyl)-methanone
(1e) in 80% and 90% yields, respectively. Another Friedel–Crafts
reaction on N,N-dihexylanthracen-2-amine (2) was performed
with benzoyl chloride and aluminum chloride as Lewis acid at
0 °C in 1,2-dichloroethane. We obtained (2-(dihexylamino)anthra-
cen-1-yl)(phenyl)methanone (1j) with 80% yield. However, the
same reaction when conducted at 40 °C produces a complex mix-
ture of products together with a small amount of starting material.
All the three procedures above led to the kinetic products (1e, f,
and j), which were formed by the attack of the electrophilic species
at position 1 of N,N-dihexylanthracen-2-amine (2), and no thermo-
dynamic products arising from attack at position 5 or 8 were ob-
served (Scheme 5).
Finally, the anthracene derivative 7-(dihexylamino)anthracene-
1-carbaldehyde (1d) was obtained by the Vilsmeier–Haack reac-
tion16 of N,N-dihexylanthracen-2-amine (2) with POCl3 and DMF
at 150 °C (Scheme 6). All new compounds were characterized by
1H and 13C NMR, IR, and high-resolution mass spectroscopy.
The absorption spectrum of compound 1d (Fig. 3) is characteris-
tic of substituted anthracene derivatives with a donor–acceptor sys-
tem that is dependent on the solvent properties unlike anthracene
structures without the push–pull conjugation. The broad band
around 390–540 nm is assigned as an intramolecular charge-trans-
fer band.2 The maximum charge-transfer molar extinction coeffi-
cients of 1a–f in THF are 5.53 Â 103; 3.53 Â 103; 9.55 Â 103;
9.16 Â 103; 5.54 Â 103; 1.13 Â 104 L cmÀ1 molÀ1, respectively.
The maximum absorption of compounds 1a–f (Fig. 3) in a vari-
ety of solvents spanning a wide range of polarity including nonpo-
lar, polar and polar aprotic solvents are listed in Table 1.
Acknowledgments
The authors would like to thank CAPES and CNPq for the
scholarships granted and FAPERJ for financial support.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Ihmels, H.; Meiswinkel, A.; Mohrschladt, C. J. Org. Lett. 2000, 2, 2865–2867;
(b) Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.;
Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P. L.; Kobayashi, H. Nat. Med.
2009, 15, 104–109; (c) Shelar, D. P.; Patil, S. R.; Rote, R. V.; Jachak, M. N. J.
Fluoresc. 2012, 22, 17–29; (d) Kim, I.; Kim, D.; Sambasivan, S.; Ahn, K. H. Asian J.
Org. Chem. 2012, 1, 60–64.
2. Lu, Z.; Lord, S. J.; Wang, H.; Moerner, W. E.; Twieg, R. J. J. Org. Chem. 2006, 71,
9651–9657.
3. Weber, G.; Farris, F. J. Biochemistry 1979, 18, 3075–3078.
4. Prendergast, F. G.; Meyer, M.; Carlson, G. L.; Iida, S.; Potter, J. D. J. Biol. Chem.
1983, 258, 7541–7544.
5. Lakowicz, J. R.; Cherek, H.; Bevan, D. R. J. Biol. Chem. 1980, 255, 4403–4406.
6. Pierce, D. W.; Boxer, S. G. J. Phys. Chem. 1992, 96, 5560–5566.
7. Giordano, L.; Shvadchak, V. V.; Fauerbach, J. A.; Jares-Erijman, E. A.; Jovin, T. M.
J. Phys. Chem. Lett. 2012, 3, 1011–1016.
8. Kucherak, O. A.; Richert, L.; Mély, Y.; Klymchenko, A. S. Phys. Chem. Chem. Phys.
2012, 14, 2292–2300.
9. Kucherak, O. A.; Didier, P.; Mély, Y.; Klymchenko, A. S. J. Phys. Chem. Lett. 2010,
1, 616–620.
10. Reichardt, C. Chem. Rev. 1994, 94, 2319–2358.
11. Marini, A.; Muñoz-Losa, A.; Biancardi, A.; Mennucci, B. J. Phys. Chem. B 2010,
114, 17128–17135.
12. (a) Carvalho, J. R. M.; Lopes, C. C.; Lopes, R. S. C.; Cardoso, J. N.; Slana, G. B. A.;
Guerra, M. WO 2006032120 A2 20060330, PCT Int. Appl. 2006.; (b) Carvalho, J.
R. M.; Lopes, C. C.; Lopes, R. S. C.; Cardoso, J. N.; Slana, G. B. A.; Guerra, M. U.S.
Patent, 2010, 7,674,398.
13. Yanagimoto, T.; Takimiya, K.; Otsubo, T.; Ogura, F. J. Chem. Soc., Chem. Commun.
1993, 519–520.
14. Raimundo, J.; Blanchard, P.; Gallego-Planas, N.; Mercier, N.; Ledoux-Rak, I.;
Hierle, R.; Roncali, J. J. Org. Chem. 2002, 67, 205–218.
15. Name Reactions; Li, J. J., Ed; Springer Dordrecht Heidelberg London New York,
2009; p 145.
The influence of selected solvents on the absorption of 1d is
shown in Figure 3. In contrast to the absorption, solvent polarity
has a dramatic effect on the emission wavelength. Thus, an in-
crease in solvent polarity causes a redshift of the emission band.
This effect is especially pronounced for 1c (Fig. 4) and leads to
the conclusion that the dipole moment of the excited state is larger
than the ground state (Table 1).17
In summary, we have prepared novel environment-sensitive
16. Name Reactions; Li, J. J., Ed; Springer Dordrecht Heidelberg London New York,
2009, 419–420.
fluorophores
1-(2-(dihexylamino)anthracen-1-yl)propan-1-one
(1a), 1-(6-(dihexylamino)anthracen-1-yl)propan-1-one (1b), and
1-(7-(dihexylamino)anthracen-1-yl)propan-1-one (1c) and other
17. Ihmels, H.; Meiswinkel, A.; Mohrschladt, C. J.; Otto, D.; Waidelich, M.; Towler,
M.; White, R.; Albrecht, M.; Schnurpfeil, A. J. Org. Chem. 2005, 70, 3929–3938.