Chemical Science
Edge Article
1,6- and 1,8-regioselectivites observed in related reactions.26
Finally, b-alkyl substitution in the Michael adduct could be
achieved by using an alkylidine malonate electrophile (entry 8).
The resulting product was obtained in essentially quantitative
yield and with high stereoselectivity.
4 J. S. Bandar, G. S. Sauer, W. D. Wulff, T. H. Lambert and
M. J. Vetticatt, J. Am. Chem. Soc., 2014, 136, 10700.
5 M. Kotke and P. R. Schreiner, (Thio)urea Organocatalysts, in
Hydrogen Bonding in Organic Synthesis, ed. Petri M. Pihko,
Wiley-VCH, 2009, pp. 141–251.
´
´
´
6 R. Chinchilla, C. Najera and P. Sanchez-Agullo, Tetrahedron:
Asymmetry, 1994, 5, 1393.
7 M. S. Iyer, K. M. Gigstad, N. D. Namdev and M. Lipton, J. Am.
Chem. Soc., 1996, 118, 4910.
Conclusions
The 2,3-diaminocyclopropenimine framework offers a unique
new catalyst platform for enantioselective Brønsted base catal-
ysis. The potent basicity of the cyclopropenimine scaffold
clearly contributes to the effectiveness of these catalysts for
certain applications. However, as our work has demonstrated,
basicity is by no means the sole contributor to catalyst effi-
ciency, as H-bonding ability and other organizational elements
also play a crucial role. Most striking is the impact of the dicy-
clohexylamino substituents on the optimal catalyst efficiency,
which serve to modulate both the electronic and conforma-
tional properties of the catalyst framework in unexpected ways.
Future efforts will be aimed at exploiting the information
gained from this work for the development of other chiral
cyclopropenimine catalysts and applying these catalysts to
enantioselective transformations of high value.
8 E. J. Corey and M. J. Grogan, Org. Lett., 1999, 1, 157.
9 (a) T. Ishikawa, Y. Araki, T. Kumamoto, H. Seki, K. Fukuda
and T. Isobe, Chem. Commun., 2001, 245; (b) A. Ryoda,
N. Yajima, T. Haga, T. Kumamoto, W. Kananishi,
M. Kawahata, K. Yamaguchi and T. Ishikawa, J. Org. Chem.,
2008, 73, 133.
10 For initial reports see: (a) M. Terada, H. Ube and Y. Yaguchi,
J. Am. Chem. Soc., 2006, 128, 1454; (b) M. Terada, M. Nakano
and H. Ube, J. Am. Chem. Soc., 2006, 128, 16044; (c)
M. Terada, T. Ikehara and H. Ube, J. Am. Chem. Soc., 2007,
129, 14112.
11 For a review see: (a) D. Leow and C.-H. Tan, Synlett, 2010,
1589; For initial developments and selected examples see:
(b) J. Shen, T. T. Nguyen, Y.-P. Goh, W. Ye, X. Fu, J. Xu and
C.-H. Tan, J. Am. Chem. Soc., 2006, 128, 13692; (c) W. Ye,
D. Leow, S. L. M. Goh, C.-H. Tan, C.-H. Chian and
C.-H. Tan, Tetrahedron Lett., 2006, 47, 1007; (d) X. Fu,
Z. Jiang and C.-H. Tan, Chem. Commun., 2007, 47, 5058; (e)
H. Lui, D. Leow and C.-H. Tan, J. Am. Chem. Soc., 2009,
131, 7212; (f) J. Wang, J. Chen, C. Wee Kee and C.-H. Tan,
Angew. Chem., Int. Ed., 2012, 51, 2382.
12 (a) D. Uraguchi, S. Sakaki and T. Ooi, J. Am. Chem. Soc., 2007,
129, 12392; (b) D. Uraguchi, Y. Ueki and T. Ooi, Science, 2009,
326, 120; (c) D. Uraguchi, T. Ito and T. Ooi, J. Am. Chem. Soc.,
2009, 131, 3836; (d) D. Uraguchi, T. Ito, S. Nakamura and
T. Ooi, Chem. Sci., 2010, 1, 488; (e) D. Uraguchi, T. Ito,
S. Nakamura, S. Sakaki and T. Ooi, Chem. Lett., 2009, 38,
1052; (f) D. Uraguchi, S. Nakamura and T. Ooi, Angew.
Chem., Int. Ed., 2010, 49, 7562; (g) D. Uraguchi, Y. Ueki and
T. Ooi, Angew. Chem., Int. Ed., 2011, 50, 3681; (h)
D. Uraguchi, Y. Ueki and T. Ooi, Chem. Sci., 2012, 3, 842;
(i) M. Corbett, D. Uraguchi, T. Ooi and J. Johnson, Angew.
Chem., Int. Ed., 2012, 51, 4685; (j) D. Uraguchi,
K. Yoshioka, Y. Ueki and T. Ooi, J. Am. Chem. Soc., 2012,
134, 19370; (k) D. Uraguchi, Y. Ueki, A. Sugiyama and
T. Ooi, Chem. Sci., 2013, 4, 1308; (l) D. Uraguchi,
R. Tsutsumi and T. Ooi, J. Am. Chem. Soc., 2013, 135, 8161.
Acknowledgements
Funding for the initial development of cyclopropenimine cata-
lysts and portions of this work aimed at understanding the
physical properties of these materials was provided by the
National Science Foundation under CHE-0953259. Acknowl-
edgement is also made to the donors of the American Chemical
Society Petroleum Research Fund (49279-DNI) for partial
support of this research. Financial support for the portions of
this work concerning enantioselective catalysis was provided by
NIHGMS (R01 GM102611). THL is grateful for an Ely Lilly
Grantee Award. J.S.B. is grateful for NDSEG and NSF graduate
fellowships. We thank Dr Aaron Sattler, Dr Neena Chakrabarti,
and the Parkin group for X-ray structure determination; the
National Science Foundation (CHE-0619638) is thanked for
acquisition of an X-ray diffractometer. We also thank the
Leighton group (Columbia University) for use of their
instrumentation.
Notes and references
1 For reviews on enantioselective Brønsted base catalysis see: 13 T. Takeda and M. Terada, J. Am. Chem. Soc., 2013, 135, 15306.
˜
´
(a) Superbases for Organic Synthesis: Guanidines, Amidines, 14 M. G. Nunez, A. J. M. Farley and D. J. Dixon, J. Am. Chem. Soc.,
and Phosphazenes and Related Organocatalysts, ed. T. 2013, 135, 16348.
Ishikawa, John Wiley and Sons, 2009; (b) C. Palomo, 15 Z. Yoshida and Y. Tawara, J. Am. Chem. Soc., 1971, 93, 2573.
´
M. Oiarbide and R. Lopez, Chem. Soc. Rev., 2009, 38, 632; 16 Both tetrachlorocyclopropene and pentachlorocyclopropane
(c) T. Marcelli and H. Hiemstra, Synthesis, 2010, 1229; (d)
X. Fu and C.-H. Tan, Chem. Commun., 2011, 47, 8210.
2 J. S. Bandar and T. H. Lambert, J. Am. Chem. Soc., 2012, 134,
5552.
are commercially available from Sigma-Aldrich; for their
syntheses see, respectively: (a) S. W. Tobey and R. West, J.
Am. Chem. Soc., 1966, 88, 2481; (b) S. W. Tobey and
R. West, J. Am. Chem. Soc., 1966, 88, 2478.
3 J. S. Bandar and T. H. Lambert, J. Am. Chem. Soc., 2013, 135, 17 K. Brak and E. N. Jacobsen, Angew. Chem., Int. Ed., 2013, 52,
11799.
534.
Chem. Sci.
This journal is © The Royal Society of Chemistry 2015