Page 3 of 4
Journal of the American Chemical Society
where a mixture of regioisomers could have been formed, the
least sterically congested product (10a-j) is strongly favored.
1
AUTHOR INFORMATION
C—H functionalization onto an electron rich aromatic ring is
favored. Cyclization to a position para to a methoxy group is
favored, as illustrated for substrates 9a-h, which gave the di-
hydrobenzofurans 10a-h within 24 h. However, in the case of
9f-h, containing two methoxy groups in the ring undergoing
C—H oxidation, a significant amount of aromatized benzofu-
ran side-products were observed in the crude reaction mix-
tures. Substrates 9i-k lacking a methoxy group in the ring un-
dergoing C—H oxidations required more vigorous reaction
conditions to form the dihydrofurans 10i-k. The carboxylic
acid derived from 10g was crystalline and its absolute configu-
ration was unambiguously assigned by X-ray crystallog-
raphy.10 The absolute configuration of the other dihydrofurans
is assumed to be the same by analogy. Even though the yields
of the dihydrobenzofurans are relatively modest (39-63%),
these reactions illustrate the synthetic potential of C—H func-
tionalization. Yet the dihydrobenzofurans are produced in 93-
99% ee without any observable epimerization.
2
3
4
5
6
7
8
9
Corresponding Author
* hmdavie@emory.edu
Author Contributions
The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the manu-
script.
Funding Sources
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
This work was supported by NSF under the CCI Center for Selec-
tive C-H Functionalization, CHE-1205646.
ACKNOWLEDGMENT
We thank Dr. John Bacsa for the X-ray crystallographic structure
determination.
REFERENCES
In order to further illustrate the versatility of C—H func-
tionalization strategies, a third C—H functionalization was
attempted. The dihydrofuran 5 was hydrolyzed to the acid 11,
which was then subjected to a Heck-type C—H functionaliza-
tion. This resulted in the formation of the benzofuranylacry-
late 12 in 46% yield (77% based on recovered starting materi-
al), which contains key features that are present in the natural
product lithospermic acid.3d The moderate conversion for the
formation of 12 is presumably caused by the highly crowded
nature of the flanked C—H bonds.
(1) Recent reviews: (a) Davies, H. M. L.; Manning, J. R. Nature
2008, 451, 417-424. (b) Colby, D. A.; Bergman, R. G.; Ellman,
J. A. Chem. Rev. 2009, 110, 624-655. (c) Giri, R.; Shi, B.-F.;
Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38,
3242-3272. (d) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010,
110, 1147-1169. (e) Borovik, A. S. Chem. Soc. Rev. 2011, 40,
1870-1874. (f) Collet, F.; Lescot, C.; Dauban, P. Chem. Soc.
Rev. 2011, 40, 1926-1936. (g) Davies, H. M. L.; Morton, D.
Chem. Soc. Rev. 2011, 40, 1857-1869. (h) Gutekunst, W. R.;
Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976-1991. (i) Hartwig,
J. F. Chem. Soc. Rev. 2011, 40, 1992-2002. (j) Lewis, J. C.; Coe-
lho, P. S.; Arnold, F. H. Chem. Soc. Rev. 2011, 40, 2003-2021.
(k) Lu, H.; Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899-1909.
(l) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev.,
2011; 40, 1885-1898. (m) Colby, D. A.; Tsai, A. S.; Bergman, R.
G.; Ellman, J. A. Acc. Chem. Res. 2011, 45, 814-825. (n) Davies,
H. M. L.; Lian, Y. Acc. Chem. Res. 2012, 45, 923-935.
(2) Recent reviews and examples: (a) Davies, H. M. L.; Denton, J.
R. Chem. Soc. Rev. 2009, 38, 3061-3071. (b) Du Bois, J. Org.
Process Res. Dev. 2011, 15, 758-762. (c) O'Malley, S. J.; Tan,
K. L.; Watzke, A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2005, 127, 13496-13497. (d) Davies, H. M. L.; Dai, X.;
Long, M. S. J. Am. Chem. Soc. 2006, 128, 2485-2490. (e) Dai,
X.; Wan, Z.; Kerr, R. G.; Davies, H. M. L. J. Org. Chem. 2007,
72, 1895-1900. (f) Stang, E. M.; White, C. M. Nat. Chem. 2009,
1, 547-551. (g) Mandal, D.; Yamaguchi, A. D.; Yamaguchi, J.;
Itami, K. J. Am. Chem. Soc. 2011, 133, 19660-19663. (h) Gu-
tekunst, W. R.; Gianatassio, R.; Baran, P. S. Angew. Chem. Int.
Ed. 2012, 51, 7507-7510. (i) Ghosh, A. K.; Cheng, X.; Zhou, B.
Org. Lett. 2012, 14, 5046-5049.
(3) Synthesis using intramolecular C—H insertion via rhodium
carbene intermediates: (a) Kurosawa, W.; Kan, T.; Fukuyama, T.
J. Am. Chem. Soc. 2003, 125, 8112-8113. (b) Koizumi, Y.; Ko-
bayashi, H.; Wakimoto, T.; Furuta, T.; Fukuyama, T.; Kan, T. J.
Am. Chem. Soc. 2008, 130, 16854-16855. (c) Natori, Y.; Tsutsui,
H.; Sato, N.; Nakamura, S.; Nambu, H.; Shiro, M.; Hashimoto,
S. J. Org. Chem. 2009, 74, 4418-4421. (d) Wang, D.-H.; Yu, J.-
Q., J. Am. Chem. Soc. 2011, 133, 5767-5769. (e) Wakimoto, T..
Miyata, K.; Ohuchi, H.; Asakawa, T.; Nukaya, H.; Suwa, Y.;
Kan, T. Org. Lett. 2011, 13, 2789-2791. (f) Gu, Z.; Zakarian, A.
Org. Lett. 2011, 13, 1080-1082.
(4) Recent examples: (a) Nadeau, E.; Li, Z.; Morton, D.; Davies, H.
M. L. Synlett 2009, 151-154. (b) Hansen, J.; Autschbach, J.; Da-
vies, H. M. L. J. Org. Chem. 2009, 74, 6555-6563. (c) Nadeau,
E.; Ventura, D. L.; Brekan, J. A.; Davies, H. M. L. J. Org.
Chem. 2010, 75, 1927-1939. (d) Lian, Y.; Davies, H. M. L. J.
Am. Chem. Soc. 2011, 133, 11940-11943. (e) Lian, Y.; Hardcas-
tle, K. I.; Davies, H. M. L. Angew. Chem. Int. Ed. 2011, 50,
9370-9373. (f) Chuprakov, S.; Malik, J. A.; Zibinsky, M.; Fokin,
V. V. J. Am. Chem. Soc. 2011, 133, 10352-10355. (g) Harvey,
Scheme 3. Heck-type C—H Functionalization
H
CO2H
CO2Me
2N NaOH
MeO
MeO
MeOH
OMe
OMe
OMe
OMe
O
O
5
11
81% yield
2 equiv.
CO2Et
CO2Et
20 mol% Pd(OAc)2
20 mol% Ac-Ile-OH
2 equiv KHCO3
CO2H
MeO
t-AmylOH, 1 atm O2
100 °C, 48 h
OMe
OMe
O
12
46% isolated yield
60% conversion
In conclusion, this paper illustrates the potential of C—H
functionalization for the streamlined synthesis of complex
targets. Dihydrofurans were synthesized in a highly regio-,
diastereo- and enantioselective manner by a synthetic se-
quence involving three distinct C—H functionalization steps.
As selective C—H functionalization methodologies continue
to develop, it is expected that they will have a great impact on
the strategies used for the synthesis of complex targets, fine
chemicals, natural products and potential therapeutic agents.
Controlling site selectivity in multiple C—H functionalization
steps will be critical to bring this synthetic potential to frui-
tion, and this study demonstrates that such levels of control are
becoming achievable.
ASSOCIATED CONTENT
Full experimental data, X-ray crystallographic data. This material
ACS Paragon Plus Environment