SHORT COMMUNICATION
3-Styrylpyridine (Table 3, entry 7):[12] Eluent: C5H12/Et2O 70:30.
Colourless solid, yield 78%. 1H NMR (300 MHz, CDCl3): δ = 8.73
(d, J = 2.2 Hz, 1 H), 8.48 (dd, J = 3.2, 1.6 Hz, 1 H), 7.84 (dt, J =
8, 2.2 Hz, 1 H), 7.53 (d, J = 7.3 Hz, 2 H), 7.39 (t, J = 7.3 Hz, 2
H), 7.33–7.26 (m, 2 H), 7.18 (d, J = 16.5 Hz, 1 H), 7.5 (d, J =
16.5 Hz, 1 H) ppm. 13C{1H} NMR (75 MHz, CDCl3): δ = 148.7,
136.7, 133.1, 132.7, 130.9, 128.9, 128.3, 126.8, 125.0, 123.6 ppm.
3-Styrylquinoline (Table 3, entry 8):[12] Eluent: C5H12/Et2O 85:15.
Pale yellow solid, yield 99%. 1H NMR (300 MHz, CDCl3): δ =
9.10 (d, J = 2.1 Hz, 1 H), 8.13 (d, J = 2 Hz, 1 H), 8.07 (d, J =
8.5 Hz, 1 H), 7.79 (dd, J = 8.1, 1.2 Hz, 1 H), 7.67–7.62 (m, 1 H),
7.56–7.48 (m, 3 H), 7.40–7.25 (m, 4 H), 7.20 (d, J = 16.6 Hz, 1 H)
ppm. 13C{1H} NMR (75 MHz, CDCl3): δ = 149.6, 147.6, 136.9,
132.4, 131.1, 130.4, 129.4, 129.3, 129.0, 128.4, 128.2, 128.0, 127.1,
126.8, 125.3 ppm.
2-Styrylthiophene (Table 3, entry 9):[12] Eluent: C5H12/Et2O 85:15.
Pale yellow solid, yield 66%. 1H NMR (300 MHz, CDCl3): δ =
7.49–7.46 (m, 2 H), 7.38–7.33 (m, 2 H), 7.28–7.19 (m, 3 H), 7.08
(m, 1 H), 7.03–7.00 (m, 1 H), 6.94 (d, J = 16.1 Hz, 1 H) ppm.
13C{1H} NMR (75 MHz, CDCl3): δ = 143.0, 137.1, 131.0, 128.8,
128.5, 127.7, 126.4, 126.2, 124.5, 121.9 ppm.
3-Styrylthiophene (Table 3, entry 10):[10] Eluent: C5H12/Et2O 85:15.
Pale yellow solid, yield 42%. 1H NMR (300 MHz, CDCl3): δ =
7.49–7.46 (m, 2 H), 7.36–7.30 (m, 4 H), 7.26–7.21 (m, 2 H), 7.12
(d, J = 16.3 Hz, 1 H), 6.95 (d, J = 16.3 Hz, 1 H) ppm. 13C{1H}
NMR (75 MHz, CDCl3): δ = 140.3, 137.5, 128.8, 127.6, 126.4,
126.3, 125.1, 123.0, 122.5 ppm.
S. Hsu, J. Polym. Sci., Part A 2009, 47, 2713; d) X. Huang, Y.
Xu, Q. Miao, L. Zong, H. Hu, Y. Cheng, Polymer 2009, 50,
2793; e) J. A. Mikroyannidis, M. M. Stylianakis, K. Y. Cheung,
M. K. Fung, A. B. Djurisˇic´, Synth. Met. 2009, 159, 142.
[3] a) R. Loska, C. M. Rao Volla, P. Vogel, Adv. Synth. Catal.
2008, 350, 2859; b) K. Mitsudo, T. Imura, T. Yamaguchi, H.
Tanaka, Tetrahedron Lett. 2008, 49, 7287.
[4] a) M. Oberholzer, R. Gerber, C. M. Frech, Adv. Synth. Catal.
2012, 354, 627; b) P. Srinivas, K. Srinivas, P. R. Likhar, B. Srid-
har, K. V. Mohan, S. Bhargava, M. L. Kantam, J. Organomet.
Chem. 2011, 696, 795; c) I. P. Beletskaya, A. V. Cheprakov,
Chem. Rev. 2000, 100, 3009; d) R. B. Bedford, C. S. J. Cazin,
D. Holder, Coord. Chem. Rev. 2004, 248, 2283; e) N. T. S. Phan,
M. Van der Sluys, C. W. Jones, Adv. Synth. Catal. 2006, 348,
609; f) V. T. Trepohl, M. Oestreich in Modern Arylation Meth-
ods (Ed.: L. Ackermann), Wiley-VCH, Weinheim, 2009, p. 221.
[5] a) S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009,
109, 3612; b) C. S. J. Cazin (Ed.), N-Heterocyclic Carbenes in
Transition Metal Catalysis and Organocatalysis, Springer, New
York, 2011.
[6]
a) N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M. Scott,
S. P. Nolan, J. Am. Chem. Soc. 2006, 128, 4101; b) A. Char-
toire, M. Lesieur, L. Falivene, A. M. Z. Slawin, L. Cavallo,
C. S. J. Cazin, S. P. Nolan, Chem. Eur. J. 2012, 18, 4517; c) A.
Chartoire, X. Frogneux, S. P. Nolan, Adv. Synth. Catal. 2012,
354, 1897; d) A. R. Martin, A. Chartoire, A. M. Z. Slawin, S. P.
Nolan, Beilstein J. Org. Chem. 2012, 8, 1637; e) V. Jurcˇík, S. P.
Nolan, C. S. J. Cazin, Chem. Eur. J. 2009, 15, 2509; f) S. Fanta-
sia, J. D. Egbert, V. Jurcˇík, C. S. J. Cazin, H. Jacobsen, L. Cav-
allo, D. M. Heinekey, S. P. Nolan, Angew. Chem. 2009, 121,
5284; Angew. Chem. Int. Ed. 2009, 48, 5182; g) C. E. Hart-
mann, V. Jurcˇík, O. Songis, C. S. J. Cazin, Chem. Commun.
2013, 49, 1005; h) J. Broggi, V. Jurcˇík, O. Songis, A. Poater, L.
Cavallo, A. M. Z. Slawin, C. S. J. Cazin, J. Am. Chem. Soc.
2013, DOI: 10.1021/ja311087c; i) T. E. Schmid, D. C. Jones, O.
Songis, O. Diebolt, M. R. Furst, A. M. Z. Slawin, C. S. J. Ca-
zin, Dalton Trans. 2013, DOI: 10.1039/c2dt32858e.
Supporting Information (see footnote on the first page of this arti-
cle): Solvent and base screening, experiments with low catalyst
1
loading, H and 13C{1H} NMR spectra of all biaryl products.
Acknowledgments
[7]
a) M. S. Viciu, R. M. Kissling, E. D. Stevens, S. P. Nolan, Org.
Lett. 2002, 4, 2229; b) O. Diebolt, P. Braunstein, S. P. Nolan,
C. S. J. Cazin, Chem. Commun. 2008, 3190; c) C. E. Hartmann,
S. P. Nolan, C. S. J. Cazin, Organometallics 2009, 28, 2915; d)
S. Akzinnay, F. Bisaro, C. S. J. Cazin, Chem. Commun. 2009,
5752.
The authors are grateful to the Royal Society (University Research
Fellowship to C. S. J. C), the Engineering and Physical Sciences Re-
search Council (EPSRC) and the EaStCHEM School of Chemistry
for funding and to Umicore for the loan of palladium salts.
[8] [Pd(μ-Cl)Cl(SIPr)]2 (1) and [Pd(μ-Cl)Cl(IPr)]2 (2) are commer-
cially available.
[1] a) T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 1971,
44, 581; b) R. F. Heck, J. P. Nolley Jr., J. Org. Chem. 1972, 37,
2320.
[2] For examples, see: a) C. Torborg, M. Beller, Adv. Synth. Catal.
2009, 351, 3027; b) D. Schils, F. Stappers, G. Solberghe, R.
van Heck, M. Coppens, D. Van den Heuvel, P. Van der Donck,
T. Callewaert, F. Meeussen, E. De Bie, K. Eersels, E. Schout-
eden, Org. Process Res. Dev. 2008, 12, 530; c) S.-H. Yang, C.-
[9] D. R. Jensen, M. S. Sigman, Org. Lett. 2003, 5, 63.
[10] B. Mu, T. Li, W. Xu, G. Zeng, P. Liu, Y. Wu, Tetrahedron 2007,
63, 11475.
[11] J. Bietz, H. Ritter, Macromol. Chem. Phys. 2009, 210, 1114.
[12] K. M. Dawood, W. Solodenko, A. Kirsching, ARKIVOC 2007,
104.
Received: February 3, 2013
Published Online: March 18, 2013
Eur. J. Inorg. Chem. 2013, 2007–2010
2010
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim