ChemComm
Communication
indanols, a privileged skeleton of significant importance in
organic synthesis and medicinal chemistry. Under mild and
basic conditions, the current reaction is complementary to the
conventional Friedel–Crafts strategy, where strong acidic con-
ditions are employed and the cyclization step highly depends
on the substrate electronic environment. Without modifica-
tion, the standard conditions can be applied to the synthesis of
enantioenriched 3-amino-1-indanols using a cleavable chiral
sulfinamide nucleophile.
This work was supported by the Hong Kong University of
Science and Technology.
Notes and references
Scheme 2 Synthesis of enantioenriched 3-amino-1-indanol derivatives.
1 (a) D. M. X. Donelly, J. Oreilly, J. Polonsky and M. H. Sheidan,
J. Chem. Soc., Chem. Commun., 1983, 615–616; (b) D. M. X. Donnelly,
J. Oreilly, J. Polonsky and M. H. Sheridan, J. Chem. Soc., Perkin
Trans. 1, 1987, 1869–1872; (c) B. Jaki, J. Orjala, H. R. Burgi and
O. Sticher, Pharm. Biol., 1999, 37, 138–143; (d) N. Frankish and
H. Sheridan, J. Med. Chem., 2012, 55, 5497–5505, and references
cited therein.
(2)
(3)
2 (a) A. Shafiee, B. H. Arison, R. R. Miller, G. M. Garrity and
B. Heimbuch, Patent, WO 9612492, 1996; (b) M. Vieth and
´
D. J. Cummins, J. Med. Chem., 2000, 43, 3020–3032; (c) C. Perez,
M. Pastor, A. R. Ortiz and F. Gago, J. Med. Chem., 1998, 41, 836–852.
´
´
´
3 H. Gonzalez-Dıaz, F. Prado-Prado, X. Garcıa-Mera, N. Alonso,
´
˜
´˜
P. Abeijon, O. Caamano, M. Yanez, C. R. Munteanu, A. Pazos,
´
˜
M. A. Dea-Ayuela, M. T. Gomez-Munoz, M. M. Garijo, J. Sansano
and F. M. Ubeira, J. Proteome Res., 2011, 10, 1698–1718.
4 (a) K. Kinbara, Y. Katsumata and K. Saigo, Chem. Lett., 2002,
266–267; (b) D. Wu, J. Pontillo, B. Ching, S. Hudson, Y. Gao,
B. A. Fleck, K. Gogas and W. S. Wade, Bioorg. Med. Chem. Lett.,
We have also carried out a control experiment, hoping to get
some insight into the kinetic and thermodynamic profile of the
reaction. As shown in eqn (4), chalcone 1k does not participate in
the conjugate addition reaction with TsNH2 under our standard
conditions. This result is consistent with the mechanism in
which the first aza-Michael reaction is reversible, favoring the
starting material, and the subsequent intramolecular aldol reac-
tion is thermodynamically favorable and rate-determining.
´
´
2008, 18, 4224–4227; (c) M. Lopez-Garcıa, I. Alfonso and V. Gotor,
Chem.–Eur. J., 2004, 10, 3006–3014; (d) Ref. 3; (e) J. H. Markgraf,
T. Mueller and C. R. Myers, Heterocycles, 1989, 29, 2399–2402.
5 For some sporadic reports on the synthesis of 3-amino-1-indanols
using other methods, see: (a) P.-S. Lee, T. Fujita and N. Yoshikai,
J. Am. Chem. Soc., 2011, 133, 17283–17295; (b) A. C. O’Sullivan,
J. H. Schaetzer, C. Luethy, A. C. Elliott and C. J. Mathews, Patent, WO
020377A2, 2007; (c) M. Ueda, S. Kawai, M. Hayashi, T. Naito and
O. Miyata, J. Org. Chem., 2010, 75, 914–921.
´
´
6 (a) Ref. 5c; (b) V. Gotor Santamarıa, I. Y. Alonso Rodrıguez and
´
´
M. Lopez Garcıa, Patent, ES2237312A1, 2003; (c) L. R. Marcin and
A. C. Good, Patent, US0037868A1, 2007.
(4)
7 (a) D. Enders, C. Grondal and M. R. M. Huttl, Angew. Chem., Int. Ed.,
2007, 46, 1570–1581; (b) F.-Z. Peng and Z.-H. Shao, Curr. Org. Chem.,
2011, 15, 4144–4160; (c) B. Westermann, M. Ayaz and S. S. van
Berkel, Angew. Chem., Int. Ed., 2010, 49, 846–849; (d) A.-N. Alba,
X. Companyo, M. Viciano and R. Rios, Curr. Org. Chem., 2009, 13,
1432–1474.
We were also interested in applying our method in the
synthesis of enantioenriched aminoindanol products. Gratify-
ingly, without modification of the standard conditions, the
desired aza-Michael–aldol cascade process with (R)-tert-butanesul-
finamide11 as the nucleophile proceeds smoothly to afford the
desired product 3t with excellent efficiency and stereocontrol
(Scheme 2). The structure and absolute stereochemistry of the
product were also confirmed by single crystal X-ray diffraction.10
The product can also be transformed to other useful compounds.
For example, after a simple oxidation step, sulfonamide 6 can be
obtained with >99% ee; further oxidation by MnO2 affords
8 For selected examples of aza-Michel–aldol cascade reactions, see:
(a) X. Zhang, X. Song, H. Li, S. Zhang, X. Chen, X. Yu and W. Wang,
´
Angew. Chem., Int. Ed., 2012, 51, 7282–7286; (b) H. Sunden, R. Rios,
´
I. Ibrahem, G.-L. Zhao, L. Eriksson and A. Cordova, Adv. Synth.
Catal., 2007, 349, 827–832; (c) E. L. Richards, P. J. Murphy, F. Dinon,
S. Fratucello, P. M. Brown, T. Gelbrich and M. B. Hursthouse,
Tetrahedron, 2001, 57, 7771–7784.
9 For selected examples initiated by an attached aldehyde followed by
an intramolecular Michael reaction on the same type of substrates,
see: (a) F. A. Luzzio and O. E. Okoromoba, Tetrahedron Lett., 2011,
´
52, 6530–6533; (b) E. Sanchez-Larios, J. M. Homes, C. L. Daschner
and M. Gravel, Org. Lett., 2010, 12, 5772–5775.
enantiopure aminoindanone 7 with high efficiency (83% yield 10 CCDC 902390 (3a), 902391 (3h), 904189 (5c) and 902392 (3t).
Compounds 3a, 3h, and 5c are racemic, and compound 3t is
enantiopure‡.
11 M. T. Robak, M. A. Herbage and J. A. Ellman, Chem. Rev., 2010, 110,
based on recovered starting material, >99% ee).
In summary, we have developed an organocatalyzed strategy
for the efficient and diastereoselective synthesis of 3-amino-1-
3600–3740.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 4361--4363 4363