Chemical Science
Edge Article
A number of cinnamyl alcohols were tested in the reaction,
to explore whether these conditions using 14 were synthetically
useful (Table 6). A catalyst loading of 1 mol% was employed, in
light of the challenging nature of primary allylic alcohol
substrates. While cinnamyl alcohol could be isomerised in a
straightforward manner, additional steric hindrance precluded
2 S.-I. Murahashi, Ruthenium in Organic Synthesis, Wiley-VCH
Verlag GmbH & Co. KGaA, 2005.
3 R. C. van der Dri, E. Bouwman and E. Drent, J. Organomet.
Chem., 2002, 650, 1–24.
4 S. Bellemin-Laponnaz and J.-P. Le Ny, C. R. Chim., 2002, 5,
217–224.
´
reaction (Entries
1
and 2). Electron-withdrawing groups
5 L. Mantilli, D. Gerard, C. Besnard and C. Mazet, Eur. J. Inorg.
rendered the reaction more challenging, although this could be
mitigated by increasing the reaction time (Entries 3–5). Inter-
estingly 14 shows reduced reactivity in the isomerisation of 27,
probably due to the combination of steric hindrance and
coordinating effect of the NMe2 on the aryl ring.
Catalysts based on the (3-phenylindenyl)bis(triphenyl phos-
phine)ruthenium motif are therefore capable of isomerising
primary alcohols, when a base is not present. Here, this has
been achieved via use of a cationic ruthenium species.
Chem., 2012, 2012, 3320–3330.
6 A. Azua, S. Sanz and E. Peris, Organometallics, 2010, 29, 3661–
3664.
7 A. P. da Costa, J. A. Mata, B. Royo and E. Peris,
Organometallics, 2010, 29, 1832–1838.
´
´ ´ ´
8 R. Garcıa-Alvarez, F. J. Suarez, J. Dıez, P. Crochet,
˜
´
´
V. Cadierno, A. Antinolo, R. Fernandez-Galan and
F. Carrillo-Hermosilla, Organometallics, 2012, 31, 8301–8311.
9 B. M. Trost and R. J. Kulawiec, J. Am. Chem. Soc., 1993, 115,
2027–2036.
¨
10 C. Slugovc, E. Ruba, R. Schmid and K. Kirchner,
Conclusions
Organometallics, 1999, 18, 4230–4233.
11 V. Cadierno, S. E. Garcia-Garrido and J. Gimeno, Chem.
Commun., 2004, 232–233.
Complex 1 has been evaluated in the isomerisation of allylic
alcohols, showing high activity and broad compatibility with
substituted allylic compounds. Indeed, 1 can be considered one
of the most active ruthenium complexes reported in the litera-
ture for this reaction, requiring only 0.25–0.5 mol% ruthenium
and short reaction times at room temperature. The potential
energy surface for this reaction has been explored, and
compared to that of the analogous reactions with similar cata-
lysts that show far less activity.
´
12 V. Cadierno, S. E. Garcıa-Garrido, J. Gimeno, A. Varela-
´
Alvarez and J. A. Sordo, J. Am. Chem. Soc., 2006, 128, 1360–
1370.
´
´
13 B. Martın-Matute, K. Bogar, M. Edin, F. B. Kaynak and
¨
J.-E. Backvall, Chem.–Eur. J., 2005, 11, 5832–5842.
14 M. Ito, S. Kitahara and T. Ikariya, J. Am. Chem. Soc., 2005,
127, 6172–6173.
15 S. Manzini, C. A. Urbina-Blanco, A. Poater, A. M. Z. Slawin,
L. Cavallo and S. P. Nolan, Angew. Chem., Int. Ed., 2012, 51,
1042–1045.
16 S. Manzini, C. A. Urbina-Blanco and S. P. Nolan, Adv. Synth.
Catal., 2012, 354, 3036–3044.
In addition, it was shown that the use of cationic species 14
can remove the need for added base, and widen the scope of
the reaction to include challenging primary allylic alcohol
substrates.
Further investigations into the applications of 1, the
synthesis and study of a systematic series of variants, and their
further application are currently underway in our laboratories.
17 S. Manzini, C. A. Urbina-Blanco and S. P. Nolan,
Organometallics, 2013, 32, 660–664.
´
18 J. A. Fernandez-Salas, S. Manzini and S. P. Nolan, Chem.
Commun., 2013, 49, 5829–5831.
19 S. Manzini, D. J. Nelson and S. P. Nolan, ChemCatChem,
2013, 5, 2848–2851.
20 R. K. Henderson, C. Jimenez-Gonzalez, D. J. C. Constable,
S. R. Alston, G. G. A. Inglis, G. Fisher, J. Sherwood,
S. P. Binks and A. D. Curzons, Green Chem., 2011, 13, 854–
862.
Acknowledgements
We thank the ERC (Advanced Investigator Award ‘FUNCAT’ to
SPN) and the EPSRC for funding. Umicore is thanked for gis of
materials. SPN is a Royal Society Wolfson Merit Award holder.
Melanja Smith and Dr Tomas Lebl are thanked for assistance
´
with NMR spectroscopy facilities. Dr Cesar A. Urbina-Blanco is
21 S. Kozuch and J. M. L. Martin, ACS Catal., 2012, 2, 2787–
2794.
22 D. V. McGrath and R. H. Grubbs, Organometallics, 1994, 13,
224–235.
acknowledged for useful discussions. LC thanks the HPC team
of Enea for using the ENEA-GRID and the HPC facilities
CRESCO in Portici (Italy) for access to remarkable computa-
´
tional resources. AP thanks the Spanish MICINN for a Ramon y
23 I. W. Ashworth, I. H. Hillier, D. J. Nelson, J. M. Percy and
M. A. Vincent, Eur. J. Org. Chem., 2012, 2012, 5673–
5677.
Cajal contract (RYC-2009-05226) and European Commission for
a Career Integration Grant (CIG09-GA-2011-293900).
24 F. C. Courchay, J. C. Sworen, I. Ghiviriga, K. A. Abboud and
K. B. Wagener, Organometallics, 2006, 25, 6074–6086.
25 S. Kozuch and S. Shaik, Acc. Chem. Res., 2010, 44, 101–110.
Notes and references
´
´
1 R. Uma, C. Crevisy and R. Gree, Chem. Rev., 2002, 103, 27–52.
188 | Chem. Sci., 2014, 5, 180–188
This journal is © The Royal Society of Chemistry 2014