10.1002/chem.201705061
Chemistry - A European Journal
COMMUNICATION
Qin, S. Li, X. Chen, Nanoscale 2012, 4, 66-75; d) V. F. Puntes, P. Gorostiza, D.
M. Aruguete, N. G. Bastus, a. P. Alivisatos, Nat. Mater. 2004, 3, 263-268; e) A.
K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995-4021.
a) E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray,
Nature 2006, 439, 55-59; b) X. Ye, J. Chen, C. B. Murray, J. Am. Chem. Soc.
2011, 133, 2613-2620; c) R. J. Macfarlane, M. R. Jones, B. Lee, E. Auyeung,
C. A. Mirkin, Science 2013, 341, 1222-1225; d) C. Zhang, R. J. Macfarlane, K.
L. Young, C. H. J. Choi, L. Hao, E. Auyeung, G. Liu, X. Zhou, C. A. Mirkin,
Nat. Mater. 2013, 12, 741-746.
a) S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, C.
Mirkin, Nature 2008, 451, 553-556; b) D. Nykypanchuk, M. M. Maye, D. van
der Lelie, O. Gang, Nature 2008, 451, 549-552; c) M. A. Kostiainen, P.
Hiekkataipale, A. Laiho, V. Lemieux, J. Seitsonen, J. Ruokolainen, P. Ceci,
Nat. Nanotechnol. 2013, 8, 52-56.
a) Y. Kang, X. Ye, J. Chen, L. Qi, R. E. Diaz, V. Doan-Nguyen, G. Xing, C. R.
Kagan, J. Li, R. J. Gorte, et al., J. Am. Chem. Soc. 2013, 135, 1499-1505; b) J.
Li, Y. Wang, T. Zhou, H. Zhang, X. Sun, J. Tang, L. Zhang, A. M. Al-Enizi, Z.
Yang, G. Zheng, J. Am. Chem. Soc. 2015, 137, 14305-14312; c) E. Auyeung,
W. Morris, J. E. Mondloch, J. T. Hupp, O. K. Farha, C. A. Mirkin, J. Am.
Chem. Soc. 2015, 137, 1658-1662.
comparing the reaction rate of the substrates to the reaction rate
of TMB in the crystals, it can be concluded that
3,3’-diaminobenzidin and 3-amino-9-ethylcarbazole (Fig. S16
and S17) show a similar reaction rate as TMB, as coloration of
the crystals is observed within minutes. O-phenyldiamine,
5-aminosalicylic acid and o-dianisidine react considerably slower
(Fig. S13 – S15), because coloration is only clearly visible after
one day. Because there is no correlation of substrate size and
reactivity, the reactivity does apparently not depend on the size
of the substrates used in this study. Nevertheless, the container
pores and the crystal channels (diameter of about 10 Å, Fig.
S19) could offer a potential filter effect, e.g. with regard to the
size or polarity of the substrates, further exploited by
engineering the containers’ pores and crystal lattice channels.
Our results demonstrate that engineered protein
containers can function as building blocks for well-defined
heterogeneous catalysts based on metal oxide nanoparticles.
The nanoparticles show oxidase-like and peroxidase-like activity
inside the crystalline material. The nanoparticle materials are
stable in solution and can be produced with lateral dimensions
up to several hundred micrometers. The protein scaffold
provides stability to the nanoparticles but ensures access to the
nanoparticles via the channels within the crystal and the protein
[2]
[3]
[4]
[5]
[6]
a) P. Ringler, Science 2003, 302, 106-109; b) S. Gonen, F. DiMaio, T. Gonen,
D. Baker, Science 2015, 348, 1365-1368.
a) P. A. Sontz, J. B. Bailey, S. Ahn, F. A. Tezcan, J. Am. Chem. Soc. 2015, 137,
11598-11601; b) C. J. Lanci, C. M. Macdermaid, S.-g. Kang, R. Acharya, B.
North, X. Yang, Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 7304-7309.
J. J. Roy, T. E. Abraham, Chem. Rev. 2004, 104, 3705-3721.
a) A. Mozzarelli, G. L. Rossi, Annu. Rev. Biophys. Biomol. Struct. 1996, 25,
343-365; b) A. L. Margolin, M. A. Navia, Angew. Chem. Int. Ed. 2001, 40,
2204-2222.
a) T. Beck, A. Krasauskas, T. Gruene, G. M. Sheldrick, Acta Crystallogr. Sect.
D 2008, 64, 1179-1182; b) A. C. W. Pike, E. F. Garman, T. Krojer, F. von
Delft, E. P. Carpenter, Acta Crystallogr. Sect. D 2016, 72, 303-318.
[7]
[8]
[9]
[10] J. Mikkilä, E. Anaya-Plaza, V. Liljeström, J. R. Caston, T. Torres, A. de la
Escosura, M. A. Kostiainen, ACS Nano 2016, 10, 1565-1571.
container pores. In this way,
a long-standing challenge,
nanoparticle surface accessibility in nanoparticle superlattices, is
overcome. In addition to providing stability to the nanoparticle
lattice, the protein scaffold can also impart biocompatibility of the
material, important for applications in the biomedical field. Here,
the utilization of nanoparticles is still hampered by their
compatibility and stability in biological systems. The presented
binary system enables a fine control over the composition of the
heterogeneous catalyst. Along these lines, binary superlattices
built from nanoparticles, also other than the ones used in the
current study, with different or complementary catalytic
functionality could catalyze cascade reactions within the protein
scaffold.
[11] M. Künzle, T. Eckert, T. Beck, J. Am. Chem. Soc. 2016, 138, 12731-12734.
[12] T. Beck, S. Tetter, M. Künzle, D. Hilvert, Angew. Chem. Int. Ed. 2015, 54,
937-940.
[13] a) M. Lei, T. Z. Yang, W. J. Wang, K. Huang, R. Zhang, X. L. Fu, H. J. Yang,
Y. G. Wang, W. H. Tang, Int. J. Hydrogen Energy 2013, 38, 205-211; b) M.
Aguirre, M. Paulis, J. R. Leiza, Journal of Materials Chemistry A 2013, 1,
3155-3155; c) I. Shitanda, S. Mori, M. Itagaki, Anal. Sci. 2011, 27, 1049-1052;
d) J. Kašpar, P. Fornasiero, N. Hickey, Catal. Today 2003, 77, 419-449.
[14] C. Xu, X. Qu, NPG Asia Mater. 2014, 6, e90.
[15] X. Liu, W. Wei, Q. Yuan, X. Zhang, N. Li, Y. Du, G. Ma, C. Yan, D. Ma,
Chem. Commun. 2012, 48, 3155-3157.
[16] L. L. Chng, N. Erathodiyil, J. Y. Ying, Acc. Chem. Res. 2013, 46, 1825-1837.
[17] a) F. C. Meldrum, B. R. Heywood, S. Mann, Science 1992, 257, 522-523; b) R.
M. Kramer, C. Li, D. C. Carter, M. O. Stone, R. R. Naik, J. Am. Chem. Soc.
2004, 126, 13282-13286; c) M. Uchida, M. L. Flenniken, M. Allen, D. A.
Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J.
Young, T. Douglas, J. Am. Chem. Soc. 2006, 128, 16626-16633; d) C. A. Butts,
J. Swift, S.-G. Kang, L. Di Costanzo, D. W. Christianson, J. G. Saven, I. J.
Dmochowski, Biochemistry 2008, 47, 12729-12739; e) Z. Varpness, J. W.
Peters, M. Young, T. Douglas, Nano Lett. 2005, 5, 2306-2309; f) J. Fan, J.-J.
Yin, B. Ning, X. Wu, Y. Hu, M. Ferrari, G. J. Anderson, J. Wei, Y. Zhao, G.
Nie, Biomaterials 2011, 32, 1611-1618.
[18] a) A. Liu, C. H. H. Traulsen, J. J. L. M. Cornelissen, ACS Catalysis 2016, 6,
3084-3091; b) A. Liu, L. Yang, C. H. H. Traulsen, J. J. L. M. Cornelissen,
Chem. Commun. 2017, 53, 7632-7634; c) P. C. Jordan, D. P. Patterson, K. N.
Saboda, E. J. Edwards, H. M. Miettinen, G. Basu, M. C. Thielges, T. Douglas,
Nature Chemistry 2015, 8, 1-7; d) Y. Azuma, R. Zschoche, M. Tinzl, D.
Hilvert, Angew. Chem. Int. Ed. 2016, 55, 1531-1534; e) S. Tetter, D. Hilvert,
Angew. Chem. Int. Ed. 2017, 10.1002/anie.201708530, 1-5.
Acknowledgements
We thank Prof. Ulrich Schwaneberg for generous support with
regard to protein production and Prof. Ulrich Simon for general
support and helpful discussions. This work was generously
supported by
Chemischen Industrie),
a
Liebig scholarship to T.B. (Fonds der
doctoral scholarship to M.L.
a
(Cusanuswerk), a doctoral scholarship to M.K. (Fonds der
Chemischen Industrie), and the Excellence Initiative of the
German federal and state governments (I3TM Seed Fund grant
and I3TM Step2Project grant to T.B.).
[19] A. Frey, B. Meckelein, D. Externest, M. A. Schmidt, J. Immunol. Methods
2000, 233, 47-56.
[20] E. G. Heckert, S. Seal, W. T. Self, Environ. Sci. Technol. 2008, 42, 5014-5019.
[21] A. Asati, S. Santra, C. Kaittanis, S. Nath, J. M. Perez, Angew. Chem. Int. Ed.
2009, 48, 2308-2312.
[22] a) S. Abe, K. Hirata, T. Ueno, K. Morino, N. Shimizu, M. Yamamoto, M.
Takata, E. Yashima, Y. Watanabe, J. Am. Chem. Soc. 2009, 131, 6958-6960;
b) S. Zhang, J. Zang, H. Chen, M. Li, C. Xu, G. Zhao, Small 2017, 13,
1701045-1701045.
Keywords: protein engineering • protein container •
nanocatalysis • nanoparticles • nanoparticle superlattice
[1]
a) D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev.
2010, 110, 389-458; b) A.-H. Lu, W. Schmidt, N. Matoussevitch, H.
Bönnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schüth, Angew.
Chem. Int. Ed. 2004, 43, 4303-4306; c) L. Jiang, Y. Sun, F. Huo, H. Zhang, L.
This article is protected by copyright. All rights reserved.