10.1002/anie.201805732
Angewandte Chemie International Edition
COMMUNICATION
The cycloaddition products can also be readily diversified;
representative transformations of compound 3aa are shown in
Scheme 5. Enoate cyclopropanation and epoxidation both occur
Acknowledgements
This work was supported by the NSF and EPA through the
Catalysis Collaboratory for Light-Activated Earth Abundant
Reagents (C-CLEAR) (CHE-1339674). F.J.S. is supported by
the NSF Graduate Research Fellowship Program (038550-02).
Mass spectrometry data was acquired on an instrument
supported by the NIH (S10RR028859). We thank Prof. Todd
Harrop and Phan Truong for assistance with electrochemical
measurements.
with
excellent
diastereoselectivity.
Both
allylic
halogenation/azidation and oxidation[31] functionalize the γ-
methylene. Michael additions and deconjugative alkylations
were also successful, both in high diastereoselectivity. Diol 18
can be attained in excellent dr, and it can be further transformed
into piperidine 19 via oxidative cleavage and reductive amination.
Cycloaddition with TMS-diazomethane[32] works well, and a
further desilylative elimination yields aminonitrile 21. Reduction
to alcohol 22 followed by Johnson orthoester Claisen
Keywords: chromium • cycloaddition • diazo compound •
rearrangement affords alkene 23.
Diastereoselective
photocatalysis • ruthenium
hydrogenation affords ester 24;[33] importantly, the electron-rich
arene can be oxidatively converted to carboxylic acid 25,
illustrating substrate requirements we observe in radical cation
formation are ultimately not restrictive in accessing product
diversity.
[1]
[2]
[3]
N. Iwasawa, Thermal and Metal-Induced [3+2] Cycloadditions. In
Comprehensive Organic Synthesis II (Eds.: P. Knochel, G. A.
Molander), Elsevier, Amsterdam, 2014; vol. 5, pp 273-350.
For
a recent review of cyclopentane natural product synthesis
approaches, see: Ferreira, A. J.; Beaudry, C. M. Tetrahedron 2017, 73,
965.
CO2Et
CO2Et
CO2Et
X
PMP
Me
PMP
Me
For recent reviews on the use of vinyl and enol diazocarbonyl
compounds, see: a) Q. -Q. Cheng, Y. Deng, M. Lankelma, M. P. Doyle,
Chem. Soc. Rev. 2017, 46, 5425; b) E. López, S. González-Pelayo, L.
A. López, Chem. Rec. 2017, 17, 312; c) Q. -Q. Cheng, Y. Yu, J.
Yedoyan, M. P. Doyle, ChemCatChem 2018, 10, 488.
PMP
Me
12 (X = O)
66%, >19:1 dr
13 (X = CH2)
61%, >19:1 dr
14, 45%
1.3:1 dr
15, 51%
N3
O
(a) or (b)
(d)
(c)
CO2Et
CO2Et
EtO2C
PMP
[4]
For seminal examples using vinyl diazocarbonyls, see: a) H. M. L.
Davies, B. Hu, Tetrahedron Lett. 1992, 33, 455; b) H. M. L. Davies, B.
Hu, E. Saikali, P. R. Bruzinski, J. Org. Chem. 1994, 59, 4535; c) H. M. L.
Davies, B. Xiang, N. Kong, D. G. Stafford, J. Am. Chem. Soc. 2001,
123, 7461; d) Y. Lian, H. M. L. Davies, J. Am. Chem. Soc. 2010, 132,
440; e) J. F. Briones, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135,
13314; f) E. López, G. Lonzi, J. González, L. A. López, Chem. Commun.
2016, 52, 9398; g) E. López, J. González, L. A. López, Adv. Synth.
Catal. 2016, 358, 1428; h) E. López, L. A. López, Angew. Chem. Int. Ed.
2017, 56, 5121; Angew. Chem. 2017, 129, 5203; i) E. López, G. Lonzi,
L. A. López, Synthesis 2017, 49, 4461.
PMP
Ph
PMP
(e)
(f)
NO2
(g)
Me
Me
Me
17, 99%, >19:1 dr
(m)
3aa
16, 76%
(i)
(k)
H
N
CO2Et
OH
CH2OH
CO2Et
EtO2C
N
H
PMP
Me
PMP
Me
PMP
Me
PMP
OH
TMS
22, 97%
24, 99%
Me
18, 87%
20, 98%
11:1 dr
1.4:1 dr
(h)
(j)
(l)
(n)
CO2Et
CO2Et
NH2
CO2Et
[5]
For seminal examples using enol diazocarbonyls, see: a) A. G. Smith,
H. M. L. Davies, J. Am. Chem. Soc. 2012, 134, 18241; b) X. Xu, J. S.
Leszczynski, S. M. Mason, P. Y. Zavalij, M. P. Doyle, Chem. Commun.
2014, 50, 2462; c) Y. Deng, M. V. Yglesias, H. Arman, M. P. Doyle,
Angew. Chem. Int. Ed. 2016, 55, 10108; Angew. Chem. 2016, 128,
10262; d) C. Jing, Q. -Q. Cheng, Y. Deng, H. Arman, M. P. Doyle, Org.
Lett. 2016, 18, 4550; e) Y. Deng, L. A. Massey, Y. A. Rodriguez Núñez,
H. Arman, M. P. Doyle, Angew. Chem. Int. Ed. 2017, 56, 12292; Angew.
Chem. 2017, 129, 12460.
PMP
Me
PMP
Me
HO2C
Me
PMP
N
Ph
CN
CO2Et
Me
19, 24% (+12%)
21, 99%
23, 87%, 2.1:1 dr
25, 78%, 13:1 dr
Scheme 5. Cycloaddition product diversification. Reagents: a) m-CPBA; b)
Me3S(O)I, NaH; c) NBS, AIBN, then NaN3; d) Pd(OH)2/C, TBHP, K2CO3; e)
CH3NO2, DBU; f) KHMDS, BnBr, HMPA; g) OsO4, NMO; h) Pb(OAc)4, then
NaBH3CN, BnNH2, AcOH; i) Me3SiCHN2, n-BuLi; j) TsOH; k) DIBAL; l)
MeC(OEt)3, PivOH; m) Pd/C, H2; n) RuCl3·3H2O, NaIO4.
[6]
C=O and C=N bonds have also been utilized as the 2-atom component
to form heterocycles. For examples, see: a) M. P. Doyle, W. Hu, D. J.
Timmons, Org. Lett. 2001, 3, 3741; b) M. P. Doyle, M. Yan, W. Hu, L. S.
Gronenberg, J. Am. Chem. Soc. 2003, 125, 4692; c) J. Barluenga, G.
Lonzi, L. Riesgo, L. A. López, M. Tomás, J. Am. Chem. Soc. 2010, 132,
13200.
In summary, we have developed a photocatalyzed (3+2)
cycloaddition between alkenes and vinyl diazo compounds.
Both Ru and Cr complexes catalyze this reactivity, and the
transformation appears to proceed via vinyl diazo nucleophilic
interception of a radical cation. High diastereoselectivities are
obtained in the transformation, and the cycloadducts are readily
diversified. To our knowledge, this is the first report of a vinyl
diazo species reacting with a radical cation electrophile. We
anticipate this reaction can serve as an excellent platform for
accessing an array of cyclopentane-based compounds; further
mechanistic studies, expansions toward enantioselective
variants, and applications in chemical synthesis are currently
underway.
[7]
[8]
For a related (3+2) cycloaddition between aryl diazoacetates and
alkynes, see: E. J. Park, S. H. Kim, S. Chang, J. Am. Chem. Soc. 2008,
130, 17268.
For isolated cases of vinyl diazo nucleophilicity, see: a) ref 6b; b) J.
Barluenga, G. Lonzi, L. Riesgo, M. Tomás, L. A. López, J. Am. Chem.
Soc. 2011, 133, 18138; c) A. M. Jadhav, V. V. Pagar, R. -S. Liu, Angew.
Chem. Int. Ed. 2012, 51, 11809; Angew. Chem. 2012, 124, 11979; d) V.
V. Pagar, A. M. Jadhav, R. -S. Liu, J. Org. Chem. 2013, 78, 5711; e) V.
V. Pagar, R. -S. Liu, Org. Biomol. Chem. 2015, 13, 6166; f) G. Xu, C.
Zhu, W. Gu, J. Li, J. Sun, Angew. Chem. Int. Ed. 2015, 54, 883; Angew.
Chem. 2015, 127, 897.
This article is protected by copyright. All rights reserved.