Scheme 1. Our Retrosynthetic Analysis of 3,4-Benzotropolones
Scheme 2. Syntheses of 2,2-Dimethoxypent-4-enals 7a and b
Accordingly, a synthetic plan targeting diketones keto-5
should conclude with 3,4-benzotropolones enol-5. We
traced back these diketones keto-5 to their monoketals 6.
Constituting cycloheptenes of sorts we envisaged accessing
them by ring-closing metatheses (“RCM”) of benzannu-
lated dienes 10. The latter are aromatic ketones. This
indicated that 10 could stem from the acylation20;or an
equivalent hydroxyalkylation/oxidation sequence starting
with the incorporation of 2,2-dimethoxypent-4-enals 7;
of ortho-metalated styrenes or ortho-metalated precursors
of styrenes. Such reagents seemed accessible from ortho-
bromostyrenes 8 (by Br/Li exchange) or benzaldehyde
dimethyl acetals 9 (by ortho-lithiation), respectively.
Our syntheses of 2,2-dimethoxypent-4-enals 7a and b
began with the dimethoxyacetate 11 (available from glyoxylic
acid in one step;21 Scheme 2). Allylating the 11-enolate by
modifying the procedure from Conia et al.22 delivered the
ester 12a in 74% yield (ref 22, 50%). Methallylating the
11-enolate analogously furnished ester 12b readily. Esters 12a
and b were reduced with iBu2AlH23 to provide aldehydes 7a
(74% yield) and b (95%).
antiobesity agents, for stabilizing household, cosmetic, and
nutritional products, and as UV-absorbers in sunscreens.12
Several 3,4-benzotropolones inhibit a regulator of our im-
mune system.13
A one-step synthesis of 3,4-benzotropolones from cate-
chols and pyrogallols has been known since the 19th
century.14 It is still being used15 but entails limited varia-
bility of the substitution pattern. Multistep routes to 3,
4-benzotropolone comprise the functionalization of
benzocycloheptenones16 and ring expansions.17 A route
to ether-annulated 3,4-benzotropolones by an intra-
molecular 1,3-dipolar cycloaddition18 was extended to
making polycyclic 3,4-benzotropolones by hetero-DielsÀ
Alder reactions.19
In our retrosynthetic analysis (Scheme 1) we perceived
3,4-benzotropolones 5 as thermodynamically favored enol
tautomers enol-5 of much less stable 1,2-diketones keto-5.
(12) (a) Bieler, K.; Ochs, D.; Wagner, B. WO2011048011 (A2), April 28,
2011 (CAN 154:524103). (b) Wagner, B. et al. WO2011042423 (A2), April 14,
2011 (CAN 154:443987). (c) Fukui, Y.; Asami, S.; Maeda, M. WO2010134595
Scheme 3. ortho-Lithiostyrene Approach to Benzotropolone 5d
€
(A1), November 25, 2010 (CAN 153:634903). (d) Wagner, B.; Ohrlein, R.;
Herzog, B.; Eichin, K.; Baisch, G.; Portmann, S. WO2009156324 (A2), December
30, 2009 (CAN 152:97724). (e) Romanov, A. N. et al. RU2359954 (C2), June 27,
2009 (CAN 151:100921). (f) Romanov A. N. et al. RU2359955 (C2), June 27,
2009 (CAN 151:100922).
(13) (a) Cheng, K.; Wang, X.; Zhang, S.; Yin, H. Angew. Chem., Int.
Ed. 2012, 51, 12246–12249.
(14) (a) First chemical synthesis of purpurogallin (Figure 1): Girard,
M. A. C. R. Hebd. Seꢀances Acad. Sci. 1869, 69, 865–868. (b) First enzymatic
synthesis of purpurogallin: Bertrand, M. G. C. R. Hebd. Seꢀances Acad. Sci.
1895, 120, 267–269. Isolations of analogues of the putative 1,9-dihydroxy-
4a,5-dihydro-9H-5,9-methanobenzocycloheptene-2,8,10-trione and 3,4,
5-trihydroxy-5,9-dihydro-5,9-methanobenzocycloheptene-6,10-dione inter-
€
mediates, respectively: (c) Durckheimer, W.; Paulus, E. F. Angew. Chem.,
A Br/Li exchange reaction of ortho-bromostyrene (8a)
followed by the addition of aldehyde 7a24 gave the benzylic
alcohol 13a (Scheme 3). Oxidation with Dess-Martin
periodinane25 led to the benzannulated dienone 10a. In
the presence of 1 mol % of the second generation Grubbs
Int. Ed. Engl. 1985, 24, 224–225. (d)Yanase, E.;Sawaki, K.; Nakatsuka, S.-i.
Synlett 2005, 17, 2661–2663.
(15) For example: (a) Kawabe, Y.; Aihara, Y.; Hirose, Y.; Sakurada,
A.; Yoshida, A.; Inai, M.; Asakawa, T.; Hamashima, Y.; Kan, T. Synlett
2013, 479–482. (b) Reference 11a. (c) Huang, C.; Bai, H.; Li, C.; Shi, G.
Chem. Commun. 2011, 47, 4962–4964. (d) Das, D.; Roy, S.; Debnath, S.;
Das, P. K. Chem.;Eur. J. 2010, 16, 4911–4922. (e) Li, Y.; Shibahara, A.;
Matsuo, Y.; Tanaka, T.; Kouno, I. J. Nat. Prod. 2010, 73, 33–39. (f)
Baisch, G.; Wagner, B.; Ohrlein, R. Tetrahedron 2010, 66, 3742–3748.
(16) (a) Synthesis of 3: Cook, J. W.; Somerville, A. R. Nature 1949,
€
163, 410–410. (b) Recent example: Das-tan, A.; Guney, M.; Balci, M.
€
(20) Attempted acylations of ortho-lithiostyrene (obtained from
bromostyrene 8a like in step 1 of Scheme 3) or 2-lithio-3,4-dimethoxy-
benzaldehyde dimethyl acetal (obtained from acetal 9a like in step 1 of
Scheme 5) failed with ester 12a or the corresponding Weinreb amide.
They also did not proceed cleanly with the corresponding acid chloride.
(21) (a) Cameron, A. G.; Hewson, A. T. J. Chem. Soc., Perkin Trans.
1 1983, 2979–2983. (b) Griesbaum, K.; Meister, M. Chem. Ber. 1987,
120, 1573–1580.
Helv. Chim. Acta 2005, 88, 830–838.
(17) For example: (a) Fukui, N.; Ohmori, K.; Suzuki, K. Helv. Chim.
Acta 2012, 95, 2194–2217. (b) Iwaya, K.; Tamura, M.; Nakamura, M.;
Hasegawa, E. Tetrahedron Lett. 2003, 44, 9317–9320.
€
(18) Plug, C.; Friedrichsen, W.; Debaerdemaeker, T. J. Prakt. Chem.
1997, 339, 205–216.
(19) Baldwin, J. E.; Mayweg, A. V. W.; Neumann, K.; Pritchard,
G. J. Org. Lett. 1999, 1, 1933–1935.
(22) Huet, F.; Pellet, M.; Conia, J. M. Synthesis 1979, 33–34.
(23) Reduction protocol: Trost, B. M.; Fettes, A.; Shireman, B. T.
J. Am. Chem. Soc. 2004, 126, 2660–2661.
Org. Lett., Vol. 15, No. 11, 2013
2583