10.1002/anie.201900926
Angewandte Chemie International Edition
COMMUNICATION
The crystal structure, which we obtained from product 12h
(isolated from the biotransformation of compound 2h), delivers
information of the accepted enantiomer and the stereoselectivity
of the hydroxylation (see Figure 2).
Ozaki, Biotechnol. Lett. 2000, 22, 1967-1973; i) A. Ozaki, H. Mori, T.
Sibasaki, K. Ando, K. Ochiai, S. Chiba, Y. Uosaki, (Ed.: U. P. Office),
2002; j) R. M. Johnston, L. N. Chu, M. Liu, S. L. Goldberg, A.
Goswami, R. N. Patel, Enzyme Microb. Technol. 2009, 45, 484-490.
[6] a) T. Kodera, S. V. Smirnov, N. N. Samsonova, Y. I. Kozlov, R.
Koyama, M. Hibi, J. Ogawa, K. Yokozeki, S. Shimizu, Biochemical
and Biophysical Research Communications 2009, 390, 506-510; b) S.
V. Smirnov, T. Kodera, N. N. Samsonova, V. А. Kotlyarovа, N. Y.
Rushkevich, А. D. Kivero, P. M. Sokolov, M. Hibi, J. Ogawa, S.
Shimizu, Appl. Microbiol. Biotechnol. 2010, 88, 719-726; c) M. Hibi,
T. Kawashima, T. Kodera, S. V. Smirnov, P. M. Sokolov, M.
Sugiyama, S. Shimizu, K. Yokozeki, J. Ogawa, Appl. Environ.
Microbiol. 2011, 77, 6926-6930; d) J. Ogawa, T. Kodera, S. V.
Smirnov, M. Hibi, N. N. Samsonova, R. Koyama, H. Yamanaka, J.
Mano, T. Kawashima, K. Yokozeki, S. Shimizu, Appl. Microbiol.
Biotechnol. 2011, 89, 1929-1938.
Summarizing, the chemoenzymatic, target oriented synthesis of
podophyllotoxin (1) and its epi-congener 11d was successfully
achieved employing a steroselective biocatalytic C-C bond
formation as the key step. This enzymatic transformation lacks
analogies in conventional organic chemistry as it overrides the
stereopreference of the ring closure and provides a short way to
the precursor of etoposide (4) and teniposide (5). The latter are
key compounds in chemotherapies. The substrate screening
delivered
predominantly
products
12e-m,
and
thus
dibenzylbutyrolactones – another subclass of lignan natural
products – in enantiopure form. The biocatalytic C-C bond
formation was incorporated into a target oriented synthesis of epi-
podophyllotoxin (11d) and the kinetic resolution was performed
on a two gram substrate scale. The study opens a new avenue
into the synthesis of key therapeutic agents and homologues
using a biocatalytic C-C bond formation and represents one of the
rare examples of the target oriented application of this class of
enzymes.
[7] a) X. Zhang, E. King-Smith, H. Renata, Angew. Chem. Int. Ed. 2018,
57, 5037-5041; b) C. R. Zwick, H. Renata, J. Org. Chem. 2018, 83,
7407-7415; c) C. R. Zwick, H. Renata, J. Am. Chem. Soc. 2018, 140,
1165-1169.
[8] H. Sucipto, F. Kudo, T. Eguchi, Angew. Chem. Int. Ed. 2012, 51,
3428-3431.
[9] N. Steffan, A. Grundmann, S. Afiyatullov, H. Ruan, S.-M. Li, Org.
Biomol. Chem. 2009, 7, 4082-4087.
[10] D. Jakubczyk, L. Caputi, A. Hatsch, C. A. F. Nielsen, M. Diefenbacher,
J. Klein, A. Molt, H. Schröder, J. Z. Cheng, M. Naesby, S. E.
O'Connor, Angew. Chem. Int. Ed. 2015, 54, 5117-5121.
[11] a) F. H. Vaillancourt, J. Yin, C. T. Walsh, Proc. Natl. Acad. Sci. U.S.A.
2005, 102, 10111-10116; b) C. S. Neumann, C. T. Walsh, J. Am. Chem.
Soc. 2008, 130, 14022-14023; c) W. Jiang, J. R. Heemstra, R. R.
Forseth, C. S. Neumann, S. Manaviazar, F. C. Schroeder, K. J. Hale,
C. T. Walsh, Biochemistry 2011, 50, 6063-6072.
Acknowledgements
M. Fuchs and M. Lazzarotto are grateful for an FWF grant (P
31276-B21). L. Hammerer was financed by the Austrian FFG,
BMWFJ, BMVIT, SFG, Standortagentur Tirol and ZIT through the
Austrian FFG-COMET-Funding Program. Philipp Neu is highly
acknowledged for the HRMS measurements and Bernd Werner
and Prof. Klaus Zangger are thanked for assistance with the
recording of the NMR and IR spectra.
[12] a) M.-J. Seo, D. Zhu, S. Endo, H. Ikeda, D. E. Cane, Biochemistry
2011, 50, 1739-1754; b) R. J. Cox, A. Al-Fahad, Curr. Opin. Chem.
Biol. 2013, 17, 532-536.
[13] W. Lau, E. S. Sattely, Science 2015, 349, 1224.
[14] M. Li, P. Sun, T. Kang, H. Xing, D. Yang, J. Zhang, P. W. Paré, Ind.
Crops Prod. 2018, 124, 510-518.
Keywords: 2-Oxoglutarate Dependent Dioxygenase •
Podophyllotoxin • Lignans • Biocatalysis • Total Synthesis
[15] K. R. Hande, Eur. J. Cancer 1998, 34, 1514-1521.
[16] 2017, WHO Model List of Essential Medicines, 20th List (March 2017,
[1] a) T. Newhouse, P. S. Baran, Angew. Chem. Int. Ed. 2011, 50, 3362-
3374; b) J. Wencel-Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc.
Rev. 2011, 40, 4740-4761; c) T. Brückl, R. D. Baxter, Y. Ishihara, P.
S. Baran, Acc. Chem. Res. 2012, 45, 826-839.
[2] a) P. R. Ortiz de Montellano, Chem. Rev. 2010, 110, 932-948; b) R.
Fasan, ACS Catal. 2012, 2, 647-666; c) F. P. Guengerich, A. W.
Munro, J. Biol. Chem. 2013, 288, 17065-17073; d) A. B. McQuarters,
M. W. Wolf, A. P. Hunt, N. Lehnert, Angew. Chem. Int. Ed. 2014, 53,
4750-4752; e) T. L. Poulos, Chem. Rev. 2014, 114, 3919-3962; f) L.
Hammerer, C. K. Winkler, W. Kroutil, Catal. Lett. 2018, 148, 787-
812.
amended
August
2017),
21st of January, 2019.
[17] X. Yu, Z. Che, H. Xu, Chem. Eur. J. 2017, 4467-4526.
[18] a) R. Venkateswarlu, C. Kamakshi, S. G. A. Moinuddin, P. V.
Subhash, R. S. Ward, A. Pelter, M. B. Hursthouse, M. E. Light,
Tetrahedron 1999, 55, 13087-13108; b) S. B. Hadimani, R. P. Tanpure,
S. V. Bhat, Tetrahedron Lett. 1996, 37, 4791-4794.
[19] a) L. Puricelli, R. Caniato, G. Delle Monache, Chem. Pharm. Bull.
2003, 51, 848-850; b) M. Takemoto, Y. Aoshima, N. Stoynov, J. P.
Kutney, Tetrahedron Letters 2002, 43, 6915-6917; c) J. P. Kutney, X.
Du, R. Naidu, N. M. Stoynov, M. Takemoto, Heterocycles 1996, 42,
479-484; d) M. Takemoto, Y. Hongo, Y. Aoshima, J. P. Kutney,
Heterocycles 2006, 69, 429-436.
[3] a) R. Frey, T. Hayashi, R. M. Buller, Curr. Opin. Biotechnol. 2019,
60, 29-38; b) R. K. Zhang, K. Chen, X. Huang, L. Wohlschlager, H.
Renata, F. H. Arnold, Nature 2019, 565, 67-72.
[4] a) M. Costas, M. P. Mehn, M. P. Jensen, L. Que, Chem. Rev. 2004,
104, 939-986; b) I. J. Clifton, M. A. McDonough, D. Ehrismann, N. J.
Kershaw, N. Granatino, C. J. Schofield, J. Inorg. Biochem. 2006, 100,
644-669; c) E. G. Kovaleva, J. D. Lipscomb, Nat. Chem. Biol. 2008,
4, 186-193; d) W. Hüttel, Chem. Ing. Tech. 2013, 85, 809-817; e) M.
Hibi, J. Ogawa, Appl. Microbiol. Biotechnol. 2014, 98, 3869-3876; f)
L.-F. Wu, S. Meng, G.-L. Tang, Biochim. Biophys. Acta, Proteins
Proteomics 2016, 1864, 453-470.
[20] M. Fuchs, M. Schober, A. Orthaber, K. Faber, Adv. Synth. Catal. 2013,
355, 2499-2505.
[21] a) R. O. M. A. de Souza, L. S. M. Miranda, U. T. Bornscheuer, Chem.
Eur. J. 2017, 23, 12040-12063; b) M. Hönig, P. Sondermann, N. J.
Turner, E. M. Carreira, Angew. Chem. Int. Ed. 2017, 56, 8942-8973;
c) N. J. Turner, E. O'Reilly, Nature Chem. Biol. 2013, 9, 285.
[22] D. M. Hodgson, E. P. A. Talbot, B. P. Clark, Org. Lett. 2011, 13, 2594-
2597.
[5] a) T. Matsuoka, K. Furuya, N. Serizawa, Biosci., Biotechnol., Biochem.
1994, 58, 1747-1748; b) C. C. Lawrence, W. J. Sobey, R. A. Field, J.
E. Baldwin, C. J. Schofield, Biochem. J. 1996, 313, 185-191; c) H.
Mori, T. Shibasaki, Y. Uozaki, K. Ochiai, A. Ozaki, Appl. Environ.
Microbiol. 1996, 62, 1903-1907; d) H. Mori, T. Shibasaki, K. Yano,
A. Ozaki, J. Bacteriol. 1997, 179, 5677-5683; e) A. Ozaki, H. Mori,
T. Sibasaki, K. Ando, S. Chiba, (Ed.: U. P. Office), 1998; f) T.
Shibasaki, H. Mori, S. Chiba, A. Ozaki, Appl. and Environ. Microbiol.
1999, 65, 4028-4031; g) T. Shibasaki, H. Mori, A. Ozaki, Biosci.,
Biotechnol., Biochem. 2000, 64, 746-750; h) T. Shibasaki, H. Mori, A.
[23] W.-C. Chang, Z.-J. Yang, Y.-H. Tu, T.-C. Chien, Org. Lett. 2019, 21,
228-232.
[24] J. Xiao, X.-W. Cong, G.-Z. Yang, Y.-W. Wang, Y. Peng, Org. Lett.
2018, 20, 1651-1654.
[25] a)
2013,
Enantioselectivity:
Calculation
of
E-value,
March, 2019; b) J. L. L. Rakels, A. J. J. Straathof, J. J. Heijnen,
Enzyme Microb. Technol. 1993, 15, 1051-1056; c) C. S. Chen, Y.
Fujimoto, G. Girdaukas, C. J. Sih, J. Am. Chem. Soc. 1982, 104, 7294-
7299.
This article is protected by copyright. All rights reserved.