ChemComm
Communication
3 (a) W. S. Jen, J. J. M. Wiener and D. W. C. MacMillan, J. Am. Chem.
Soc., 2000, 122, 9874; (b) A. Puglisi, M. Benaglia, M. Cinquini,
F. Cozzi and G. Celentano, Eur. J. Org. Chem., 2004, 567;
(c) S. S. Chow, M. Nevalainen, C. A. Evans and C. W. Johannes,
Tetrahedron Lett., 2007, 48, 277; (d) R. Rios, I. Ibrahem, J. Vesely,
´
G. L. Zhao and A. Cordova, Tetrahedron Lett., 2007, 48, 5701.
4 (a) A. Sakakura, M. Hori, M. Fushimi and K. Ishihara, J. Am. Chem.
Soc., 2010, 132, 15550; (b) X. Cai, C. Wang and J. Sun, Adv. Synth.
´
Catal., 2012, 354, 359; (c) J. Aleman, A. Fraile, L. Marzo, J. L. G. Ruano,
´
C. Izquierdo and S. Dıaz-Tenderob, Adv. Synth. Catal., 2012, 354, 1665.
5 Recent examples for racemic intermolecular nitrone–allene cyclo-
additions: (a) K. Kawai, K. Kodama, T. Ooi and T. Kusumi, Tetra-
hedron Lett., 2004, 45, 4097; (b) A. Kapur, K. Kumar, L. Singh,
P. Singh, M. Elango, V. Subramanian, V. Gupta, P. Kanwal and M.
P. S. Ishar, Tetrahedron, 2009, 65, 4593; (c) U. Chiacchio, A. Corsaro,
D. Iannazzo, A. Piperno, G. Romeo, R. Romeo, M. G. Saita and
Scheme 4 Further modification of 3a and 3f through a coupling reaction and
RANEYs-Ni reduction
1,3-Amino alcohol motifs are important structural elements in
a diverse range of natural products and pharmaceuticals, which
can be prepared from isoxazolidines through a ring opening
reaction.17 With our established enantioselective intermolecular
[3+2] cycloaddition of N-allenyl amides with nitrones, the N–O
bond fission reaction of cycloadducts 3 via reduction was then
investigated. After a brief screening of several reductants, it was
found that isoxazolidine 3a could be reduced by RANEYs nickel
efficiently in ethanol at 0 1C, furnishing the desired amino alcohol
4a in 99% yield and 98% enantioselectivity (Scheme 4, eqn (1)).18
Coupling of 3f with phenyl boronic acid, followed by RANEYs
nickel reduction, provided biphenyl functionalized amino alcohol
product 6 (Scheme 4, eqn (2)). High enantioselectivity was still
maintained after two steps of reactions.
ˇ
ˇ
A. Rescifina, Eur. J. Org. Chem., 2007, 4758; (d) B. Dugovic, L. Fisera
and H.-U. Reißig, Eur. J. Org. Chem., 2008, 277.
6 Gold(I)–allene interaction in non-cycloaddition reactions:
´
(a) D. Weber, M. A. Tarselli and M. R. Gagne, Angew. Chem., Int.
Ed., 2009, 48, 5733; (b) X.-M. Zeng, M. Soleilhavoup and G. Bertrand,
Org. Lett., 2009, 11, 3166; (c) R. S. Paton and F. Maseras, Org. Lett.,
2009, 11, 2237; (d) M. C. Kimber, Org. Lett., 2010, 12, 1128;
(e) T. J. Brown, A. Sugie, M. G. D. Leed and R. A. Widenhoefer,
Chem.–Eur. J., 2012, 18, 6959.
7 Review on gold-catalyzed cycloaddition: (a) D. Garayalde and
´
C. Nevado, ACS Catal., 2012, 2, 1462; (b) F. Lopez and
˜
J. L. Mascarenas, Beilstein J. Org. Chem., 2011, 7, 1075.
8 For the gold catalyzed intramolecular [3+2] reaction: (a) G.-Z. Zhang,
V. J. Catalano and L.-M. Zhang, J. Am. Chem. Soc., 2007, 129, 11358;
(b) X. Huang and L.-M. Zhang, J. Am. Chem. Soc., 2007, 129, 6398.
´
´
´
9 (a) S. Suarez-Pantiga, C. Hernandez-Dıaz, E. Rubio and
´
J. M. Gonzalez, Angew. Chem., Int. Ed., 2012, 51, 11552;
(b) J. Francos, F. Grande-Carmona, H. Faustino, J. Iglesias-Sigu¨enza,
In summary, we have demonstrated a novel and practical
protocol of gold-catalyzed enantioselective intermolecular [3+2]
dipolar cycloaddition of N-allenyl amides with nitrones to give
chiral isoxazolidines by using modified BINOL derived chiral
phosphoramidate Au(I) catalysts, in which an excessive amount
(5 mol%) of silver salts were added to reduce the undesired
gold–nitrone coordination and to enhance the catalytic activity
of the auric cation. Further derivation of compounds 3a and 3f
could provide two chiral 1,3-amino alcohols 4a and 6 in high
enantioselectivities. This is the first report, to the best of our
knowledge, on enantioselective allene–nitrone cycloaddition to
give chiral 4-alkylidenyl isoxazolidine derivatives in excellent
yields and high enantioselectivities.
´
´
´
E. Dıez, I. Alonso, R. Fernandez, J. Lassaletta, F. Lopez and
˜
J. L. Mascarenas, J. Am. Chem. Soc., 2012, 134, 14322.
10 Review on the N-allenyl amide involved reaction: L.-L. Wei, H. Xiong
and R. P. Hsung, Acc. Chem. Res., 2003, 36, 773.
11 Examples of gold catalyzed cycloaddition reactions involved with
nitrones: (a) A. Ade, E. Cerrada, M. Contel, M. Laguna, P. Merino
and T. Tejero, J. Organomet. Chem., 2004, 689, 1788; (b) H.-S. Yeom,
J.-E. Lee and S. Shin, Angew. Chem., Int. Ed., 2008, 47, 7040; (c) F. Liu,
Y. Yu and J. Zhang, Angew. Chem., Int. Ed., 2009, 48, 5505;
(d) H.-S. Yeom, Y. Lee, J.-E. Lee and S. Shin, Org. Biomol. Chem.,
2009, 7, 4744; (e) T. Wang and J. Zhang, Chem.–Eur. J., 2011, 17, 86;
( f ) Y. Zhang and J. Zhang, Chem. Commun., 2012, 48, 4710;
(g) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia,
S. N. Karad and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 15372;
(h) S. A. Gawade, S. Bhunia and R.-S. Liu, Angew. Chem., Int. Ed.,
2012, 51, 7835; (i) F. Liu, D. Qian, L. Li, X. Zhao and J.-L. Zhang,
Angew. Chem., Int. Ed., 2010, 49, 6669.
12 Review on phosphoramidate ligands in asymmetric catalysis:
J. F. Teichert and B. L. Feringa, Angew. Chem., Int. Ed., 2010, 49, 2486.
13 A. Z. Gonzalez, D. Benitez, E. Tkatchouk, W. A. Goddard III and
Notes and references
´
F. D. Toste, J. Am. Chem. Soc., 2011, 133, 5500 and references
‡ General procedure for the enantioselective gold catalyzed [3+2]
cycloaddition reaction of N-allenyl amides with nitrones: a solution of
L13AuCl (2 mol%)/AgNTf2 (5 mol%) in dry CH2Cl2 (3 mL) with 100 mg
activated 4 Å MS was stirred at rt for three minutes. Then, N-allenyl
amide 1a (32 mg, 0.1 mmol) and diphenyl nitrone 2a (39 mg, 0.2 mmol)
were added to the solution at ꢀ20 1C. The mixture was stirred at ꢀ20 1C
until complete consumption of the starting material 1a (TLC monitoring).
The concentration of the reaction mixture in vacuo followed by purification
through flash chromatography (hexane–EtOAc = 10/1) afforded 3a (51 mg,
99% yield) as a white solid.
therein.
´
14 Reference for ligand modification: A. Z. Gonzalez, D. Benitez,
E. Tkatchouk, W. A. Goddard III and F. D. Toste, J. Am. Chem.
Soc., 2011, 133, 5500 and references therein.
15 References for silver effects in gold(I) catalysis: (a) D. Wang, R. Cai,
S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov,
H. Zhang, X. Liu, J. L. Petersen and X.-D. Shi, J. Am. Chem. Soc.,
´
2012, 134, 9012; (b) D. Weber and M. R. Gagne, Org. Lett., 2009,
´
11, 4962; (c) D. Weber, M. A. Tarselli and M. R. Gagne, Angew. Chem.,
Int. Ed., 2009, 48, 5733.
1 Recent reviews: (a) V. Nair and T. D. Suja, Tetrahedron, 2007, 63, 12247; 16 The absolute configuration of (s)-3f was determined by X-ray dif-
(b) H. Pellissier, Tetrahedron, 2007, 63, 3235; (c) L. M. Stanley and M. P.
Sibi, Chem. Rev., 2008, 108, 2887; (d) M. Kissane and A. R. Maguire, Chem.
Soc. Rev., 2010, 39, 845; (e) S. Kanemasa, Heterocycles, 2010, 82, 87;
fraction analysis. The absolute configuration of all other products 3
was assigned by analogy. CCDC 907212 contains the supplementary
crystallographic data for compound 3f. See the ESI† for details.
( f ) N. A. Bokach, M. L. Kuznetsov and V. Y. Kukushkin, Coord. Chem. 17 V. A. Schmidt and E. J. Alexanian, J. Am. Chem. Soc., 2011,
Rev., 2011, 255, 2946. 133, 11402.
2 D. Chen, Z. Wang, J. Li, Z. Yang, Z. Lin, X. Liu and X. M. Feng, 18 Increasing the temperature in the RANEYs Ni reduction of 3a and 5
Chem.–Eur. J., 2011, 17, 5226 and references therein.
would lead to partially racemic products.
c
4772 Chem. Commun., 2013, 49, 4770--4772
This journal is The Royal Society of Chemistry 2013