ChemComm
Communication
Notes and references
´
1 T. Polıvka and H. A. Frank, Acc. Chem. Res., 2010, 43, 1125.
2 (a) P. Jahns and A. R. Holzwarth, Biochim. Biophys. Acta, Bioenerg.,
2012, 1817, 182; (b) P. H. Lambrev, Y. Miloslavina, P. Jahns and
A. R. Holzwarth, Biochim. Biophys. Acta, Bioenerg., 2012, 1817, 760.
3 (a) H. H. Strain, W. A. Svec, P. Wegfahrt, H. Rapoport, F. T. Haxo,
S. Norgard, H. Kjoesen and S. Liaaen-Jensen, Acta Chem. Scand.,
Ser. B, 1976, 30, 109; (b) H. Kjoesen, S. Norgard, S. Liaaen-Jensen,
W. A. Svec, H. H. Strain, P. Wegfahrt, H. Rapoport and F. T. Haxo,
Acta Chem. Scand., Ser. B, 1976, 30, 157.
4 M. Suzuki, K. Watanabe, S. Fujiwara, T. Kurasawa, T. Wakabayashi,
M. Tsuzuki, K. Iguchi and T. Yamori, Chem. Pharm. Bull., 2003, 51, 724.
5 J. A. Haugan, G. Englert, T. Aakermann, E. Glinz and S. Liaaen-
Jensen, Acta Chem. Scand., 1994, 48, 769.
6 Carotenoids Handbook, ed. G. Britton, S. Liaaen-Jensen and
¨
H. Pfander, Birkhauser, Basel, 2004.
7 (a) B. Vaz, R. Alvarez and A. R. de Lera, J. Org. Chem., 2002, 67, 5040;
(b) B. Vaz, R. Alvarez, R. Bru¨ckner and A. R. de Lera, Org. Lett., 2005,
´
´
7, 545; (c) B. Vaz, M. Domınguez, R. Alvarez and A. R. de Lera, J. Org.
´
Chem., 2006, 71, 5914; (d) B. Vaz, M. Domınguez, R. Alvarez and
Scheme 5 Reagents and conditions: (a) NaHMDS, THF, ꢀ78 1C, 2 h, 74% (10 : 1
Z/E ratio). (b) (i) Pd(PPh3)4, DMF, 40 1C, 18 h. (ii) TBAF, THF, 0 1C, 1 h, 55%.
´
A. R. de Lera, Chem.–Eur. J., 2007, 13, 1273; (e) N. Fontan,
M. Domınguez, R. Alvarez and A. R. de Lera, Eur. J. Org. Chem.,
´
´
´
2011, 6704; ( f ) N. Fontan, R. Alvarez and A. R. de Lera, J. Nat. Prod.,
2012, 75, 975.
computational insight into this coupling9 suggested that the
inversion product arises from the SN20 substitution of I by Pd(0)
at the allene unit and metallotropy of the organopalladium
intermediate, and that this pathway should be prevented using
TMS-protected iodoallenol 26.9 In the event, the coupling of 25
and 26 under the same conditions followed by removal of the
silyl ether (TBAF, THF) led to (8R,60R)-2 in 55% yield.
8 T. Kajikawa, K. Aoki, R. S. Singh, T. Iwashita, T. Kusumoto, H. A. Frank,
H. Hashimoto and S. Katsumura, Org. Biomol. Chem., 2009, 7, 3723.
9 B. Vaz, R. Pereira, M. Perez, R. Alvarez and A. R. de Lera, J. Org.
Chem., 2008, 73, 6534.
10 For a Suzuki coupling of an iodoallene, see: E. M. Woerly, A. H. Cherney,
E. K. Davis and M. D. Burke, J. Am. Chem. Soc., 2010, 132, 6941.
11 F. Bellina, A. Carpita, M. D. Santis and R. Rossi, Tetrahedron Lett.,
1994, 35, 6913.
12 L. Anastasia, C. Xu and E.-i. Negishi, Tetrahedron Lett., 2002,
43, 5673.
´
´
In summary, we have achieved the first total synthesis of
the xanthophyll (8R,60R)-peridinin-5,8-furanoxide in a sequence
that entails the late stage stereoretentive Stille cross-coupling of
an allenyliodide9,10 and a stannane, which occurs with con-
comitant C15QC150 double bond isomerization. The required
stannane was prepared by Julia–Kocienski condensation of 3
and the central conjunctive reagent 4. The preparation of the
2,5-dihydrofuran ring was based on the acid-catalyzed rearran-
gement of the butadiene oxide functionality with the alkylidene
butyrolactone substructure in place. (8R,60R)-2 and (8S,60R)-2
are the only C37 norcarotenoid furanoxides of the two dozen
congeners reported to date.6 These C40 furanoxides have been
obtained (with the exception of the aurochrome diastereo-
mers)21 by partial synthesis from the corresponding putative
biogenetic precursor carotenoids with butadiene epoxide
structural units.
13 The corresponding alcohol has been reported: A. Sorg, F. Blank and
R. Bru
¨ckner, Synlett, 2005, 1286.
14 (a) M. Kuba, N. Furuichi and S. Katsumura, Chem. Lett., 2002, 1248;
(b) T. Olpp and R. Bru¨ckner, Angew. Chem., Int. Ed., 2006, 45, 4023.
15 A. Fu¨rstner, J.-A. Funel, M. Tremblay, L. C. Bouchez, C. Nevado,
M. Waser, J. Ackerstaff and C. C. Stimson, Chem. Commun., 2008,
2873–2875. For the use of CuTC in Stille coupling, see: G. D. Allred
and L. S. Liebeskind, J. Am. Chem. Soc., 1996, 118, 2748. For the use
of phosphinate as a tin scavenger, see: J. Srogl, G. D. Allred and
L. S. Liebeskind, J. Am. Chem. Soc., 1997, 119, 12376.
16 C. P. Burke, M. R. Swingle, R. E. Honkanen and D. L. Boger, J. Org.
Chem., 2010, 75, 7505.
17 (a) J.-F. Betzer, F. Delaloge, B. Muller, A. Pancrazi and J. Prunet, J. Org.
Chem., 1997, 62, 7768; (b) B. H. Lipshutz, G. C. Clososki, W. Chrisman,
D. W. Chung, D. B. Ball and J. Howell, Org. Lett., 2005, 7, 4561.
18 T. Kajikawa, K. Aoki, R. S. Singh, T. Iwashita, T. Kusumoto,
H. A. Frank, H. Hashimoto and S. Katsumura, Org. Biomol. Chem.,
2009, 7, 3723.
19 (a) P. R. Blakemore, P. J. Kocienski, S. Marzcak and J. Wicha,
Synthesis, 1999, 1209; (b) For reviews, see: P. R. Blakemore,
¨
J. Chem. Soc., Perkin Trans. 1, 2002, 2563(c) C. Aıssa, Eur. J. Org.
The authors are grateful to MINECO-Spain (SAF2010-17935-
FEDER; FPI Fellowship to L.O.), Xunta de Galicia (Grant
Chem., 2009, 1831.
20 (a) A. Sorg and R. Bru¨ckner, Synlett, 2005, 289; (b) B. Vaz, R. Alvarez,
J. A. Souto and A. R. de Lera, Synlett, 2005, 294. A similar stereo-
chemical trend was obtained by Katsumura in the total synthesis of
peridinin: (c) N. Furuichi, H. Hara, T. Osaki, H. Mori and
S. Katsumura, Angew. Chem., Int. Ed., 2002, 41, 1023;
(d) N. Furuichi, H. Hara, T. Osaki, M. Nakano, H. Mori and
S. Katsumura, J. Org. Chem., 2004, 69, 7949.
´
08CSA052383PR; Consolidacion 2006/15; INBIOMED-FEDER
‘Unha maneira de facer Europa’; Parga Pondal Contract to
B.V.) for financial support. We thank Dr Thomas Netscher
(DSM Nutritional Products) for generous donation of (ꢀ)-actinol
for our carotenoid program.
21 M. Acemoglu and C. H. Eugster, Helv. Chim. Acta, 1984, 67, 471.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.