Paper
RSC Advances
cases, the atom economy is the same, since this green chemistry
metric does not consider the other reagents, solvents and
catalysts used in the purication and extraction steps.
7 (a) V. M. Muzalevskiy, M. N. Mamedzade, V. A. Chertkov,
V. A. Bakulev and V. G. Nenajdenko, Mendeleev Comum,
2018, 28, 17; (b) M. K. Hussain, M. I. Ansari, R. Kant and
K. Hajela, Org. Lett., 2014, 16, 560; (c) D. Sahu, S. Dey,
T. Pathak and B. Ganguly, Org. Lett., 2014, 16, 2100.
8 (a) B. Dervaux and F. D. Prez, Chem. Sci., 2012, 3, 959; (b)
B. J. Borah, D. Dutta, P. P. Saikia, N. C. Barua and
D. K. Dutta, Green Chem., 2011, 13, 3453; (c)
P. Veerakumar, M. Velayudham, K.-L. Lub and
S. Rajagopal, Catal. Sci. Technol., 2011, 1, 1512.
Conclusions
In summary, a three step “one-pot” procedure was successfully
developed for the synthesis of important biological motifs using
PEG400 as the sole solvent in the process. All reaction steps
were carefully investigated to determine the best reaction
parameters encompassing the “one-pot” methodology.
Considered an eco-friendly solvent, the use of PEG400, allied
with microwave irradiation, provided a fast, efficient, and green
reaction for obtaining dihydrochromene-triazole hybrids in
good overall yields. Scaling experiments were conducted,
showing the limit in which the reaction maintains its robust-
ness. A quantitative comparison based on Green Chemistry
metrics between the multistep conventional heating and “one-
pot” microwave irradiation procedure showed that the second
method presents advantages in terms of sustainability.
9 (a) P. Bhuyan, P. Bhorali, A. J. Bhuyan and L. Saikia,
Tetrahedron Lett., 2018, 59, 1587; (b) E. C. Lindsay,
F. H. John, S. P. Marshall and D. Y. Douglas, Bioorg. Med.
Chem. Lett., 2018, 28, 81; (c) A. Sacchetti, E. Mauri, M. Sani,
M. Mais and F. Rossi, Tetrahedron Lett., 2014, 55, 6817.
10 (a) D. R. Mishra, S. Nayak, B. P. Raiguru, S. Mohapatra,
M. B. Podh, C. R. Sahoo and R. N. Padhy, J. Heterocyclic
Chem., 2021, 58, 111; (b) S. B. Autade and K. G. Akamanchi,
Synth. Comumm., 2019, 49, 1947; (c) R. Jianga, H.-B. Suna,
S. Lia, K. Zhana, J. Zhoua, L. Liua, K. Zhanga, Q. Liangb and
Z. Chena, Synth. Comumm., 2018, 48, 2652; (d) R. J. Reddy,
Md. Waheed, T. Karthik and A. Shankar, New J. Chem.,
2018, 42, 980; (e) L. Yang, Y. Wu, Y. Yang, C. Wen and
J.-P. Wan, Beilstein J. Org. Chem., 2018, 14, 2348; (f) D. Li,
L. Liu, Y. Tian, Y. Ai, Z. Tang, H.-B. Sun and G. Zhang,
Tetrahedron, 2017, 73, 3959; (g) P. Sharma, N. P. Kumar,
K. R. Senwar, O. Forero-Doria, F. M. Nachtigall, L. S. Santos
and N. Shankaraiah, J. Braz. Chem. Soc., 2017, 28, 589; (h)
V. Y. Korotaev, I. B. Kutyashev, A. Y. Barkov and
V. Y. Sosnovskikh, Chem. Heterocycl. Compd., 2017, 53, 597;
(i) G. Schwendt and T. Glasnov, Monatsh. Chem., 2017, 148,
69; (j) T. Wang, X.-C. Hu, X.-J. Huang, X.-S. Li and J.-W. Xie,
J. Braz. Chem. Soc., 2012, 23, 1119; (k) B. Quiclet-Sire and
S. Z. Zard, Synthesis, 2005, 19, 3319; (l) R. Vroemans and
W. Dehaen, The Chemistry of 3-Nitrochromenes, in Targets
Conflicts of interest
There are no conicts to declare.
Acknowledgements
The authors gratefully acknowledge FAPESP (grants 2014/
50249-8; 2020/10246-0; and 2020/01255-6), GlaxoSmithKline,
CAPES (Finance Code 001), PNPD/CAPES and CNPq for funding
and fellowships.
References
´
´
1 M. J. Arevalo, O. Lopez and M. V. Gil, Green Chemical
Synthesis and Click Reactions, in Click React. Org. Synth.,
Wiley‐VCH Verlag GmbH & Co. KGaA, 2016, vol. 77, pp. 77–
97, DOI: 10.1002/9783527694174.ch3.
´
in Heterocyclic Systems, Scieta Chimica Italiana, 2018, vol. 2,
p. 318.
11 X.-J. Quan, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Org. Lett.,
2014, 16, 5728.
2 P. T. Anastas and J. C. Warner, Green chemistry: theory and
practice, New York: Oxford University Press, 1998.
3 (a) X. Wang, B. Huang, X. Liu and P. Zhan, Drug Discovery
Today, 2016, 21, 118; (b) S. G. Agalave, S. R. Maujan and
V. S. Pore, Chem. –Asian J., 2011, 6, 2696; (c) J.-F. Lutz and
Z. Zarafshani, Adv. Drug Delivery Rev., 2008, 60, 958; (d)
E. Kim and H. Koo, Chem. Sci., 2019, 10, 7835; (e) M. Duan,
L. H. Zhang and J. Li, Chem. J. Chin. Univ., 2008, 29, 2118.
4 (a) D. Dheer, V. Singh and R. Shankar, Bioorg. Chem., 2017,
71, 30; (b) S. B. Ferreira, A. C. Sodero, M. F. Cardoso, E. S
Lima, C. R. Kaiser, F. P. Silva and V. F. J. Ferreira, Med.
Chem., 2010, 53, 2364.
5 R. kharb, P. C. Sharma and M. S. Yar, J. Enzym. Inhib. Med.
Ch., 2011, 26, 1.
6 (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596; (b)
H. C. Kolb and B. K. Sharpless, Drug Discov. Today, 2003, 8,
1128.
12 (a) A. Saha, C.-M. Wu, R. Peng, R. Koodali and S. Banerjee,
Eur. J. Org. Chem., 2019, 104; (b) S. Payra, A. Saha and
S. Banerjee, Chem. Cat. Chem., 2018, 10, 5468.
13 (a) V. Polshettiwar and R. S. Varma, Chem. Soc. Rev., 2008, 37,
1546; (b) V. Polshettiwar and R. S. Varma, Acc. Chem. Res.,
2008, 41, 629.
14 J. Chen, K. pear, J. G. Huddleston and R. D. Rogers, Green
Chem., 2005, 7, 64.
15 D. Kumar, V. B. Reddy and R. S. Varma, Tetrahedron Lett.,
2009, 50, 2065.
16 P. M. Habib, B. R. Raju, V. Kavala, C.-W. Kuo and C.-F. Yao,
Tetrahedron, 2009, 65, 5799.
17 (a) B. M. Trost, Science, 1991, 254, 1471; (b) B. M. Trost,
Angew. Chem., Int. Ed., 1995, 34, 259; (c) R. A. Sheldon,
Chem. Ind., 1992, 903; (d) R. A. Sheldon, Green Chem.,
2007, 9, 1273.
© 2021 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2021, 11, 10336–10339 | 10339