Job/Unit: I42784
/KAP1
Date: 07-10-14 12:00:51
Pages: 11
FULL PAPER
C6H5NH+ cations, and one methanol molecule were refined in a
disordered manner. One water molecule in 3 and 4 was disordered
over two positions. The two HO– ions (O12 and O13) in 3 and 4
were located at the special sites with occupancies of 0.3333. Some
geometric restraints (DFIX, FLAT, SADI, or SIMU) were used in
modeling the poor geometries of one coordinated pyridine mol-
ecule and one coordinated CH3COO– ion in 3 and 4. Some geomet-
ric restraints were also used in modeling the poor geometries of
some coordinated DMF molecules and CH3COO– ions in 5. Of
12123 intensity reflections used in the refinement of 5, only 6796
reflections were considered “observed”; consequently, about 44%
of the data represent weak reflections, which led to R and wR val-
ues that were higher for 5 than for the other compounds. However,
the model for the structure of 5 was determined without any doubt.
Crystallographic data of 1–6 are given in Table 1. Selected bond
lengths and angles for 1–6 are listed in Tables S1–S6.
rowski, I. Justyniak, D. Prochowicz, Chem. Commun. 2011, 47,
950–952; d) D. T. Thielemann, I. Fernándezb, P. W. Roesky,
Dalton Trans. 2010, 39, 6661–6666.
a) X.-L. Li, L.-F. He, X.-L. Feng, Y. Song, M. Hu, L.-F. Han,
X.-J. Zheng, Z.-H. Zhang, S.-M. Fang, CrystEngComm 2011,
13, 3643–3645; b) R. E. Morris, X. Bu, Nat. Chem. 2010, 2,
353–361; c) Y. Kang, S. Chen, F. Wang, J. Zhang, X. Bu, Chem.
Commun. 2011, 47, 4950–4952.
[5]
[6]
[7]
a) Y. Numata, K. Inoue, N. Baranov, M. Kurmoo, K. Kikuchi,
J. Am. Chem. Soc. 2007, 129, 9902–9909; b) J. Milon, M.-C.
Daniel, A. Kaiba, P. Guionneau, S. Brandès, J.-P. Sutter, J. Am.
Chem. Soc. 2007, 129, 13872–13878; c) L. Hou, J.-P. Zhang,
X.-M. Chen, S. W. Ng, Chem. Commun. 2008, 4019–4021.
a) X.-J. Kong, Y. Wu, L.-S. Long, L.-S. Zheng, Z. Zheng, J.
Am. Chem. Soc. 2009, 131, 6918–6919; b) Z.-M. Zhang, S. Yao,
Y.-G. Li, R. Clérac, Y. Lu, Z.-M. Su, E.-B. Wang, J. Am. Chem.
Soc. 2009, 131, 14600–14601; c) A. González-Alvarez, I. Al-
fonso, J. Cano, P. Díaz, V. Gotor, V. Gotor-Fernández, E.
García-España, S. García-Granda, H. R. Jiménez, F. Lloret,
Angew. Chem. Int. Ed. 2009, 48, 6055–6058; Angew. Chem.
2009, 121, 6171–6174; d) A. S. R. Chesman, D. R. Turner, B.
Moubaraki, K. S. Murray, G. B. Deacon, S. R. Batten, Chem.
Eur. J. 2009, 15, 5203–5207; e) B. F. Abrahams, L. J. McCorm-
ick, B. Moubaraki, K. S. Murray, R. Robson, T. Waters, Chem.
Eur. J. 2011, 17, 7454–7459.
a) Z. Serna, N. D. l. Pinta, M. K. Urtiaga, L. Lezama, G. Mad-
ariaga, J. M. Clemente-Juan, E. Coronado, R. Cortés, Inorg.
Chem. 2010, 49, 11541–11549; b) T. Taguchi, W. Wernsdorfer,
K. A. Abboud, G. Christou, Inorg. Chem. 2010, 49, 199–208;
c) J.-P. Costes, L. Vendier, W. Wernsdorfer, Dalton Trans. 2011,
40, 1700–1706; d) P. L. Feng, C. C. Beedle, W. Wernsdorfer, C.
Koo, M. Nakano, S. Hill, D. N. Hendrickson, Inorg. Chem.
2007, 46, 8126–8128; e) A. M. Ako, V. Mereacre, I. J. Hewitt,
R. Clérac, L. Lecren, C. E. Ansona, A. K. Powell, J. Mater.
Chem. 2006, 16, 2579–2586.
CCDC-866564 (for 1), -866565 (for 2), -866566 (for 3), -866567 (for
4), -866568 (for 5), and -866569 (for 6) contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
Supporting Information (see footnote on the first page of this arti-
cle): Synthesis details and characterization of (2R,3R)-BSH/
(2S,3S)-BSH and (2R,3R)-MBSH/(2S,3S)-MBSH, bond lengths
and bond angles of 1–6, and additional figures.
[8]
Acknowledgments
The authors thank for the financial support by the National Natu-
ral Science Foundation of China (grant numbers 21271050,
20971029, and 21261004), the Program for New Century Excellent
Talents in University (NCET-10-0095), and the Guangxi Natural
[9]
a) D. Mandal, D. Ray, Inorg. Chem. Commun. 2007, 10, 1202–
1205; b) S. Banerjee, M. Nandy, S. Sen, S. Mandal, G. M. Ros-
air, A. M. Z. Slawin, C. J. Gómez García, J. M. Clemente-Juan,
E. Zangrando, N. Guidoling, S. Mitra, Dalton Trans. 2011, 40,
1652–1661; c) S.-Y. Lin, G.-F. Xu, L. Zhao, Y.-N. Guo, J. Tang,
Q.-L. Wang, G.-X. Liu, Inorg. Chim. Acta 2011, 373, 173–178;
d) H. Li, Z. J. Zhong, W. Chen, X.-Z. You, J. Chem. Soc., Dal-
ton Trans. 1997, 463–464; e) S. S. Tandon, S. D. Bunge, R.
Rakosi, Z. Xu, L. K. Thompson, Dalton Trans. 2009, 6536–
6551.
Science
Foundation
of
China
(grant
numbers
2013GXNSFGA019008 and 2013GXNSFAA019039).
[1] a) C. Train, R. Gheorghe, V. Krstic, L.-M. Chamoreau, N. S.
Ovanesyan, G. L. J. A. Rikken, M. Gruselle, M. Verdaguer,
Nat. Mater. 2008, 7, 729–734; b) J. Sanchiz, J. Pasán, O. Fabelo,
F. Lloret, M. Julve, C. Ruiz-Pérez, Inorg. Chem. 2010, 49, 7880–
7889.
[10]
[11]
a) B. Kure, S. Ogo, D. Inoki, H. Nakai, K. Isobe, S. Fukuzumi,
J. Am. Chem. Soc. 2005, 127, 14366–14374; b) S. K. Langley,
N. F. Chilton, M. Massi, B. Moubaraki, K. J. Berryc, K. S.
Murray, Dalton Trans. 2010, 39, 7236–7249; c) M. Chakrabarti,
L. Deng, R. H. Holm, E. Münck, E. L. Bominaar, Inorg.
Chem. 2010, 49, 1647–1650; d) M. D. Godbole, O. Roubeau,
A. M. Mills, H. Kooijman, A. L. Spek, E. Bouwman, Inorg.
Chem. 2006, 45, 6713–6722.
a) R.-K. Chiang, C.-C. Huang, C.-S. Wur, Inorg. Chem. 2001,
40, 3237–3239; b) X. Liu, J. A. McAllister, M. P. de Miranda,
E. J. L. McInnes, C. A. Kilner, M. A. Halcrow, Chem. Eur. J.
2004, 10, 1827–1837; c) X. Liu, J. A. McAllister, M. P. de Mi-
randa, B. J. Whitaker, C. A. Kilner, M. Thornton-Pett, M. A.
Halcrow, Angew. Chem. Int. Ed. 2002, 41, 756–758; Angew.
Chem. 2002, 114, 782–784; d) S. Triki, F. Thétiot, J. S. Pala, S.
Golhen, J. M. Clemente-Juan, C. J. Gómez-García, E. Coro-
nado, Chem. Commun. 2001, 2172–2173; e) Q. Chen, M.-H.
Zeng, Y.-L. Zhou, H.-H. Zou, M. Kurmoo, Chem. Mater.
2010, 22, 2114–2119; f) X.-J. Zheng, L.-P. Jin, S. Gao, Inorg.
Chem. 2004, 43, 1600–1602; g) T. D. Keene, M. B. Hursthouse,
D. J. Price, New J. Chem. 2004, 28, 558–561.
[2] a) T. Shiga, G. N. Newton, J. S. Mathieson, T. Tetsuka, M.
Nihei, L. Cronin, H. Oshio, Dalton Trans. 2010, 39, 4730–4733;
b) K. Inoue, H. Imai, P. S. Ghalsasi, K. Kikuchi, M. Ohba,
H. O. Kawa, J. V. Yakhmi, Angew. Chem. Int. Ed. 2001, 40,
4242–4245; Angew. Chem. 2001, 113, 4372–4375; c) K. Inoue,
¯
K. Kikuchi, M. Ohba, H. Okawa, Angew. Chem. Int. Ed. 2003,
42, 4810–4813; Angew. Chem. 2003, 115, 4958–4961; d) E. Co-
ronado, F. Palacio, J. Veciana, Angew. Chem. Int. Ed. 2003, 42,
2570–2572; Angew. Chem. 2003, 115, 2674–2676; e) W. Kaneko,
S. Kitagawa, M. Ohba, J. Am. Chem. Soc. 2007, 129, 248–249;
f) S. Feng, M. Zhu, L. Lu, L. Du, Y. Zhang, T. Wang, Dalton
Trans. 2009, 6385–6395.
[3] a) R. Inglis, F. White, S. Piligkos, W. Wernsdorfer, E. K. Bre-
chin, G. S. Papaefstathiou, Chem. Commun. 2011, 47, 3090–
3092; b) P. Gerbier, N. Domingo, J. Gómez-Segura, D. Ruiz-
Molina, D. B. Amabilino, J. Tejada, B. E. Williamson, J. Veci-
ana, J. Mater. Chem. 2004, 14, 2455–2460; c) P.-H. Lin, I. Ko-
robkov, W. Wernsdorfer, L. Ungur, L. F. Chibotaru, M. Muru-
gesu, Eur. J. Inorg. Chem. 2011, 1535–1539; d) C.-M. Liu, R.-
G. Xiong, D.-Q. Zhang, D.-B. Zhu, J. Am. Chem. Soc. 2010,
132, 4044–4045.
[4] a) Y. Zheng, X.-J. Kong, L.-S. Long, R.-B. Huang, L.-S. Zheng,
Dalton Trans. 2011, 40, 4035–4037; b) L.-L. Fan, F.-S. Guo, L.
Yun, Z.-J. Lin, R. Herchel, J.-D. Leng, Y.-C. Ou, M.-l. Tong,
Dalton Trans. 2010, 39, 1771–1780; c) J. Lewin´ski, T. Kaczo-
[12]
a) R. W. Saalfrank, C. Schmidt, H. Maid, F. Hampel, W. Bauer,
A. Scheurer, Angew. Chem. Int. Ed. 2006, 45, 315–318; Angew.
Chem. 2006, 118, 322–325; b) R. W. Saalfrank, C. Spitzlei, A.
Scheurer, H. Maid, F. W. Heinemann, F. Hampel, Chem. Eur.
Eur. J. Inorg. Chem. 0000, 0–0
9
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim