ChemComm
Communication
20 mmol for a coil of 25 mm diameter and 30 mm length, hence an
enhancement factor of 100 would be needed to detect this amount
in spectroscopy. Starting from an EF of 1200, after 15 s we would
have an EF of 365. There would likely be further loss in sensitivity
due to shortened T1 in tissue. Therefore, spectroscopy would be
feasible, but imaging would remain relatively challenging.
We are grateful to Dr Jae-Seung Lee for providing 13C-glycine
and Dr Yu-Shin Ding for helpful discussions. This work was
supported by NSF grant CHE-0848234 (to J.W.C.) and NSF grant
CHE-0957586 (to A.J.). Xiang Xu is grateful for the Margaret
and Herman Sokol fellowship. The NMR spectrometer was
purchased with funds from NSF grant CHE-0116222.
Notes and references
Fig. 4 13C NMR spectra of 8: (a) a single-scan with the PH-INEPT+ sequence
recorded immediately after hydrogenation. (b) The thermally polarized reference
spectrum after hydrogenation (8888 scans). ‘‘*’’ indicates starting material peaks,
‘‘S’’ indicates the solvent peak.
1 S.-C. Li and U. Lindenberger, in Cognitive neuroscience of memory, ed.
L. G. N. H. J. Markowitsch, Hogrefe & Huber Publishers, Ashland,
OH, US, 1999, pp. 103–146.
2 J. A. Lieberman, T. S. Stroup and D. O. Perkins, The American
Psychiatric Publishing textbook of schizophrenia, American Psychiatric
Pub., Washington, DC, 2006.
3 S. Guhlke, A. M. Verbruggen and S. Vallabhajosula, in Clin. Nucl.
Med., ed. H. J. Biersack and L. M. Freeman, Springer, Berlin; New
York, 2007, pp. 34–73.
4 R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P.
Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. Lopez-Serrano
and D. C. Williamson, Science, 2009, 323, 1708–1711.
5 S. B. Duckett and R. E. Mewis, Acc. Chem. Res., 2012, 45, 1247–1257.
6 Y. Endo, Biochim. Biophys. Acta, Enzymol., 1978, 523, 207–214.
7 S. M. Birnbaum, L. Levintow, R. B. Kingsley and J. P. Greenstein,
J. Biol. Chem., 1952, 194, 455–470.
8 C. K. Mathews and K. E. Van Holde, Biochemistry, Benjamin/
Cummings Pub. Co., Redwood City, Calif., 1990.
9 D. Hellwig, M. Menges, G. Schneider, M.-O. Moellers, B. F. Romeike, M. D.
Menger, C.-M. Kirsch and S. Samnick, Nucl. Med. Biol., 2005, 32, 137–145.
10 P. L. Jager, W. Vaalburg, J. Pruim, E. G. E. de Vries, K.-J. Langen and
D. A. Piers, J. Nucl. Med., 2001, 42, 432–445.
11 C. Catana, D. Procissi, Y. Wu, M. S. Judenhofer, J. Qi, B. J. Pichler,
R. E. Jacobs and S. R. Cherry, Proc. Natl. Acad. Sci. U. S. A., 2008, 105,
3705–3710.
12 S. Gloggler, R. Muller, J. Colell, M. Emondts, M. Dabrowski, B. Blumich
and S. Appelt, Phys. Chem. Chem. Phys., 2011, 13, 13759–13764.
13 J. Bargon, A. Koch, R. Rizi and J. Schmiedeskamp, Proc. Intl. Soc.
Mag. Reson. Med., Berlin, Germany, 2007.
Fig. 5 13C NMR spectra of 9: (a) a single-scan PH-INEPT+ sequence recorded
immediately after hydrogenation. The enhancement factor is 1237 ꢀ 212 at
11.7 T. (b) The thermally polarized reference spectrum after hydrogenation
(16 scans). ‘‘*’’ indicates the starting material peak.
14 C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc., 1987, 109, 5541–5542.
15 H. N. C. Wong, Z. L. Xu, H. M. Chang and C. M. Lee, Synthesis, 1992,
793–797.
16 J. A. Tang, F. Gruppi, R. Fleysher, D. K. Sodickson, J. W. Canary and
A. Jerschow, Chem. Commun., 2011, 47, 958–960.
17 J. A. Aguilar, P. I. P. Elliott, J. Lopez-Serrano, R. W. Adams and
S. B. Duckett, Chem. Commun., 2007, 1183–1185.
ring (Fig. 4). The signal-to-noise ratio of the hyperpolarized spec-
trum was much larger than that of a thermal spectrum obtained
with 8888 scans (Fig. 4b). To maximize the signal for spectroscopic
or imaging applications, the carbonyl carbon was enriched with 13
C
(substrate 9) and an average EF of 1237 ꢀ 212 was achieved. This
corresponds to 13C polarization of 1.3% (at 11.7 T, 298 K). The
hyperpolarized signals are shown in Fig. 5.
18 J. P. Candlin and A. R. Oldham, Discuss. Faraday Soc., 1968, 46, 60–71.
19 G. Oehme, E. Paetzold and R. Selke, J. Mol. Catal., 1992, 71, L1–L5.
20 R. Selke, C. Facklam, H. Foken and D. Heller, Tetrahedron: Asymmetry,
1993, 4, 369–382.
In summary, we demonstrated the hyperpolarization of several
amino acids, known to be biosynthetic precursors to neurotrans-
mitters, via PHIP and transferred the polarization to 13C in deuter-
ated and 13C-enriched precursors (EF of 1200). With these large
signal enhancement factors, this approach could be used to study
in vitro enzymatic transformations involved in neurotransmitter
biosynthesis. We are looking into adapting the production of
hyperpolarized molecules in biocompatible media. Although signal
lifetimes continue to be a limitation for many potential applications,
it has been reported, for example, that L-DOPA is taken up in the
brain and converted to dopamine within 15 s of injection.28 The
amount of dopamine that can be infused into the mouse brain is
about 200 nmol,29 and the single-scan detection limit of 13C is about
21 L. Kuhn and J. Bargon, in In situ NMR Methods in Catalysis, ed.
J. Bargon and L. Kuhn, Springer, Berlin, Heidelberg, 2007, pp. 25–68.
22 S. Aime, D. Canet, W. Dastru`\, R. Gobetto, F. Reineri and A. Viale,
J. Phys. Chem. A, 2001, 105, 6305–6310.
23 F. Gruppi, X. Xu, B. Zhang, J. A. Tang, A. Jerschow and J. W. Canary,
Angew. Chem., Int. Ed., 2012, 51, 11787–11790.
24 H. Allouche-Arnon, M. H. Lerche, M. Karlsson, R. E. Lenkinski and
R. Katz-Brull, Contrast Media Mol. Imaging, 2011, 6, 499–506.
25 H. Allouche-Arnon, T. Wade, L. F. Waldner, V. N. Miller, J. M. Gomori,
R. Katz-Brull and C. A. McKenzie, Contrast Media Mol. Imaging, 2013,
8, 72–82.
´
26 H. Johannesson, O. Axelsson and M. Karlsson, C. R. Phys., 2004, 5,
315–324.
27 M. Haake, J. Natterer and J. Bargon, J. Am. Chem. Soc., 1996, 118,
8688–8691.
28 L. Wade and R. Katzman, Am. J. Physiol., 1975, 228, 352–359.
29 K. Golman and J. S. Petersson, Acad. Radiol., 2006, 13, 932–942.
c
5306 Chem. Commun., 2013, 49, 5304--5306
This journal is The Royal Society of Chemistry 2013