ChemComm
Communication
V. V. Grushin, Angew. Chem., Int. Ed., 2011, 50, 7655; (g) A. Hafner
¨
and S. Brase, Adv. Synth. Catal., 2011, 353, 3044.
6 (a) J. Wedemann, T. Heiner, G. Mloston, G. K. S. Prakash and
G. A. Olah, Angew. Chem., Int. Ed., 1998, 37, 820; (b) G. K. S.
Prakash, M. Mandal and G. A. Olah, Org. Lett., 2011, 3, 2847;
(c) E. Mejia and A. Togni, ACS Catal., 2012, 2, 521; (d) P. Novak,
A. Lishchynskyi and V. V. Grushin, Angew. Chem., Int. Ed., 2012,
51, 7767; (e) P. Novak, A. Lishchynskyi and V. V. Grushin, J. Am.
Chem. Soc., 2012, 134, 16167.
Scheme 4 Proposed mechanism.
7 (a) D. A. Nagib, M. E. Scott and D. W. C. MacMillan, J. Am. Chem.
Soc., 2009, 131, 10875; (b) D. A. Nagib and D. W. C. MacMillan,
Nature, 2011, 480, 224; (c) J. D. Nguyen, J. W. Tucker,
M. D. Konieczynska and C. R. J. Stephenson, J. Am. Chem. Soc.,
2011, 133, 4160; (d) C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner and
C. R. J. Stephenson, J. Am. Chem. Soc., 2012, 134, 8875; (e) N. Iqbal,
S. Choi, E. Ko and E. J. Cho, Tetrahedron Lett., 2012, 53, 2005;
( f ) Y. Ye and M. S. Sanford, J. Am. Chem. Soc., 2012, 134, 9034.
8 (a) H. Morimoto, T. Tsubogo, N. D. Litvinas and J. F. Hartwig, Angew.
Chem., Int. Ed., 2011, 50, 3793; (b) X. Jiang, L. Chu and F.-L. Qing,
J. Org. Chem., 2012, 77, 1251; (c) Y. Miyake, S. Ota and
Y. Nishibayashi, Chem.–Eur. J., 2012, 18, 13255; (d) Y. Yasu,
T. Koike and M. Akita, Angew. Chem., Int. Ed., 2012, 51, 9567;
(e) Q. Qi, Q. Shen and L. Lu, J. Am. Chem. Soc., 2012, 134, 6548.
9 (a) C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu and
J.-C. Xiao, Angew. Chem., Int. Ed., 2011, 50, 1896; (b) H. Kawai,
k. Tachi, E. Tokunaga, M. Shiro and N. Shibata, Angew. Chem., Int.
Ed., 2011, 50, 7803; (c) X. Mu, S. Chen, X. Zhen and D. Liu, Chem.–Eur.
J., 2011, 17, 6039; (d) L. Chu and F.-L. Qing, J. Am. Chem. Soc., 2012,
134, 1298; (e) X.-G. Zhang, H.-X. Dai, M. Wasa and J.-Q. Yu, J. Am.
Chem. Soc., 2012, 134, 11948.
+
provide CF3 , then the alkene is activated by the electrophilic
+
CF3 , and the oxygen atom of oxime attacks the activated alkene
to give 4,5-dihydroisoxazole.
In summary, we have developed an efficient copper-catalyzed
trifluoromethylation reaction which involves the cyclization of
oximes to construct a C–CF3 bond and a C–O bond in one step.
This reaction provides a convenient and straightforward method to
prepare a variety of useful trifluoromethyl-substituted isoxazolines.
Further studies and application of this reaction are in progress.
We thank the National Science Foundation (NSF 21072080
and 21272101) and National Basic Research Program of China
(973 Program) 2010CB833203 and ‘‘111’’ program of MOE and
PCSIRT: IRT1138 for financial support.
Notes and references
10 R. Zhu and S. L. Buchwald, J. Am. Chem. Soc., 2012, 134, 12462.
1 (a) P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 11 (a) G. K. S. Prakash and A. K. Yudin, Chem. Rev., 1997, 97, 757;
Germany, 2004; (b) K. Uneyama, Organofluorine Chemistry, Blackwell, (b) R. P. Sing and J. M. Shreeve, Tetrahedron, 2000, 56, 7613.
Oxford, U.K., 2006; (c) I. Ojima, Fluorine in Medicinal Chemistry and 12 X. Mu, T. Wu, H. Wang, Y. Guo and G. Liu, J. Am. Chem. Soc., 2012,
Chemical Biology, Wiley-Blackwell, Chichester, U.K., 2009; 134, 878.
(d) B. E. Smart, Chem. Rev., 1996, 96, 1555; (e) M. Schlosser, Angew. 13 (a) S. Zaman, K. Mitsuru and A. D. Abell, Org. Lett., 2005, 7, 609;
Chem., Int. Ed., 2006, 45, 5432; ( f ) K. Muller, C. Faeh and
F. Diederich, Science, 2007, 317, 1881; (g) D. O’Hagan, Chem. Soc.
Rev., 2008, 37, 308; (h) S. Purser, P. R. Moore, S. Swallow and
V. Gouverneur, Chem. Soc. Rev., 2008, 37, 320.
(b) H. Miyabe, K. Yoshida, V. K. Reddy, A. Matsumura and
Y. Takemoto, J. Org. Chem., 2005, 70, 5630; (c) J. Kassa, K. Kuca,
L. Bartosova and G. Kunesova, Curr. Org. Chem., 2007, 11, 267;
(d) M.-K. Zhu, J.-F. Zhao and T.-P. Loh, J. Am. Chem. Soc., 2010,
132, 6284.
2 (a) M. Shimizu and T. Hiyama, Angew. Chem., Int. Ed., 2005, 44, 214;
(b) M. Hird, Chem. Soc. Rev., 2007, 36, 2070; (c) J.-A. Ma and 14 B. Han, X.-L. Yang, R. Fang, W. Yu, C. Wang, X.-Y. Duan and S. Liu,
D. Cahard, Chem. Rev., 2008, 108, PR1; (d) K. L. Kirk, Org. Process
Res. Dev., 2008, 12, 305.
3 (a) L. Zhao and C.-J. Li, Angew. Chem., Int. Ed., 2008, 47, 7075;
Angew. Chem., Int. Ed., 2012, 51, 8816.
15 K.-G. Ji, H.-T. Zhu, F. Yang, A. Shoukat, X.-F. Xia, Y.-F. Yang, X.-Y. Liu
and Y.-M. Liang, J. Org. Chem., 2010, 75, 5670.
(b) X. Wang, L. Truesdale and J.-Q. Yu, J. Am. Chem. Soc., 2010, 16 (a) P. Eisenberger, S. Gischig and A. Togni, Chem.–Eur. J., 2006,
132, 3648; (c) R. J. Lundgren and M. Stradiotto, Angew. Chem., Int.
Ed., 2010, 49, 9322; (d) J. Xie and Z.-Z. Huang, Angew. Chem., Int. Ed.,
2010, 49, 10181; (e) Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara,
I. B. Seiple, S. Su, D. G. Blackmond and P. S. Baran, Proc. Natl. Acad.
12, 2579; (b) K. Niedermann, N. Fruh, E. Vinogradova, M. S. Wiehn,
A. Moreno and A. Togni, Angew. Chem., Int. Ed., 2011, 50, 1059;
ˇ
(c) V. Matousek, A. Togni, V. Bizet and D. Cahard, Org. Lett., 2011,
13, 5762.
Sci. U. S. A., 2011, 108, 14411; ( f ) A. T. Parsons, T. D. Senecal and 17 T. Umemoto and S. Ishihara, Tetrahedron Lett., 1990, 31, 3579.
S. L. Buchwald, Angew. Chem., Int. Ed., 2012, 51, 2947; (g) T. Liu, 18 See ESI† for detailed data.
X. Shao, Y. Wu and Q. Shen, Angew. Chem., Int. Ed., 2012, 51, 540.
4 (a) E. J. Cho and S. L. Buchwald, Org. Lett., 2011, 13, 6552;
(b) N. D. Ball, J. B. Gary, Y. Ye and M. S. Sanford, J. Am. Chem.
Soc., 2011, 133, 7577; (c) Y. Ye, S. H. Lee and M. S. Sanford, Org. Lett.,
2011, 13, 5464; (d) I. Popov, S. Lindeman and O. Daugulis, J. Am.
19 (a) T. Okano, T. Uekawa and S. Eguchi, Bull. Chem. Soc. Jpn., 1989,
62, 2575; (b) N. Kamigata, T. Fukushima and M. Yoshida, Chem.
Lett., 1990, 649; (c) N. Kamigata, T. Ohtsuka, T. Fukushima,
M. Yoshida and T. Shimizu, J. Chem. Soc., Perkin Trans. 1, 1994,
1339.
Chem. Soc., 2011, 133, 9286; (e) R. N. Loy and M. S. Sanford, Org. 20 (a) X. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu, Y. Zhang and J. Wang,
Lett., 2011, 13, 2548; ( f ) J. Xu, D.-F. Luo, B. Xiao, Z.-J. Liu, T.-J. Gong,
Y. Fu and L. Liu, Chem. Commun., 2011, 47, 4300; (g) N. D. Litvinas,
P. S. Fier and J. F. Hartwig, Angew. Chem., Int. Ed., 2012, 51, 536.
5 (a) V. V. Grushin and W. J. Marshall, J. Am. Chem. Soc., 2006,
128, 12644; (b) E. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang,
J. Am. Chem. Soc., 2011, 133, 16410; (b) A. T. Parsons and
S. L. Buchwald, Angew. Chem., Int. Ed., 2011, 50, 9120; (c) J. Xu,
Y. Fu, D.-F. Luo, Y.-Y. Jiang, B. Xiao, Z.-J. Liu, T.-J. Gong and L. Liu,
J. Am. Chem. Soc., 2011, 133, 15300; (d) Y. Yasu, T. Koike and
M. Akita, Chem. Commun., 2013, 49, 2037.
D. A. Watson and S. L. Buchwald, Science, 2010, 328, 1679; 21 (a) R. Shimizu, H. Egami, T. Nagi, J. Chae, Y. Hamashima and
(c) N. D. Ball, J. W. Kampf and M. S. Sanford, J. Am. Chem. Soc.,
2010, 132, 2878; (d) L.-L. Chu and F.-L. Qing, Org. Lett., 2010,
12, 5060; (e) T. Liu and Q. Shen, Org. Lett., 2011, 13, 2342;
( f ) O. A. Tomashenko, E. C. Escudero-Adan, M. M. Belmonte and
M. Sodeoka, Tetrahedron Lett., 2010, 51, 5947; (b) R. Shimizu,
H. Egami, Y. Hamashima and M. Sodeoka, Angew. Chem., Int. Ed.,
2012, 51, 4577; (c) H. Egami, R. Shintaro, S. Kawamura and
M. Sodeoka, Angew. Chem., Int. Ed., 2013, 52, 4000.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.