10.1002/adsc.202100272
Advanced Synthesis & Catalysis
supported by JSPS KAKENHI (19K15576 to M.S. and 18K14205
to H.K.).
J. S. Johnston, M. G. McLaughlin, J. P. Reid, M. J.
Cook, Org. Biomol. Chem. 2013, 11, 7662–7666; b) B.
Suchand, G. Satyanarayana, Eur. J. Org. Chem. 2017,
3886–3895.
References
[6] For examples of base-promoted allylic isomerization to
homoenolates, see: a) T. Cuvigny, M. Julia, L. Jullien,
C. Rolando, Tetrahedron Lett. 1987, 28, 2587–2590; b)
W.-B. Wang, E. J. Roskamp, Tetrahedron Lett. 1992,
33, 7631–7634; c) M. Rehan, S. Maity, L. K. Morya, K.
Pal, P. Ghorai, Angew. Chem. Int. Ed. 2016, 55, 7728–
7732.
[1] For recent reviews, see: a) E. Emer, R. Sinisi, M. G.
Capdevila, D. Petruzziello, F. De Vincentiis, P. G.
Cozzi, Eur. J. Org. Chem. 2011, 647–666; b) B.
Sundararaju, M. Achard, C. Bruneau, Chem. Soc. Rev.
2012, 41, 4467–4483; c) R. Kumar, E. V. Van der
Eycken, Chem. Soc. Rev. 2013, 42, 1121–1146; d) N. A.
Butt, W. Zhang, Chem. Soc. Rev. 2015, 44, 7929–7967;
e) M. Dryzhakov, E. Richmond, J. Moran, Synthesis
2016, 48, 935–959; f) K. Spielmann, G. Niel, R. M. de
Figueiredo, J.-M. Campagne, Chem. Soc. Rev. 2018, 47,
1159–1173.
[7] Satyanarayana et al. succeeded in reducing the amount
of a base in some cases, but the reaction still required
as much as 50 mol% of KOtBu. See ref 5b.
[8] a) M. Sai, Adv. Synth. Catal. 2018, 360, 3482–3487; b)
M. Sai, Adv. Synth. Catal. 2018, 360, 4330–4335; c) M.
Sai, S. Matsubara, Adv. Synth. Catal. 2019, 361, 39–43;
d) M. Sai, Eur. J. Org. Chem. 2019, 1102–1106.
[2] For reviews, see: a) R. C. van der Drift, E. Bouwman,
E. Drent, J. Organomet. Chem. 2002, 650, 1–24; b) R.
Uma, C. Crévisy, R. Grée, Chem. Rev. 2003, 103, 27–
51; c) H. Suzuki, T. Takao in Ruthenium in Organic
Synthesis (Ed.: S.-I. Murahashi), Wiley-VCH,
Weinheim, 2004, pp. 309–331; d) G. C. Fu in Modern
Rhodium-Catalyzed Organic Reactions (Ed.: P. A.
Evans), Wiley-VCH, Weinheim, 2005, pp. 79–91; e) V.
Cadierno, P. Crochet, J. Gimeno, Synlett 2008, 1105–
1124; f) L. Mantilli, C. Mazet, Chem. Lett. 2011, 40,
341–344; g) N. Ahlsten, A. Bartoszewicz, B. Martín-
Matute, Dalton Trans. 2012, 41, 1660–1670; h) P.
Lorenzo-Luis, A. Romerosa, M. Serrano-Ruiz, ACS
Catal. 2012, 2, 1079–1086; i) D. Cahard, S. Gaillard,
J.-L. Renaud, Tetrahedron Lett. 2015, 56, 6159–6169;
j) H. Li, C. Mazet, Acc. Chem. Res. 2016, 49, 1232–
1241; k) D. Fiorito, S. Scaringi, C. Mazet, Chem. Soc.
Rev. 2021, 50, 1391–1406.
[9]For examples of the product-base mechanism, see: a) Y.
Yamashita, H. Suzuki, S. Kobayashi, Org. Biomol.
Chem. 2012, 10, 5750–5752; b) H. Suzuki, I. Sato, Y.
Yamashita, S. Kobayashi, J. Am. Chem. Soc. 2015, 137,
4336–4339.
[10] According to the reaction mechanism, the high
efficiency of potassium bases toward allylic
isomerization is likely due to the strong basicity, which
facilitates the 1,2-hydride shift.
[11] For a recent report on the electrophilicities of ,-
unsaturated carbonyl compounds, see: D. S. Allgäuer,
H. Jangra, H. Asahara, Z. Li, Q. Chen, H. Zipse, A. R.
Ofial, H. Mayr, J. Am. Chem. Soc. 2017, 139, 13318–
13329.ꢀ
[3] For selected examples of base-promoted allylic
isomerization, see: a) M. Tiffeneau, Bull. Soc. Chim. Fr.
1907, 1, 1205 (footnote on p. 1209); b) H. Burton, C. K.
Ingold, J. Chem. Soc. 1928, 904–921; c) D. R. Dimmel,
W. Y. Fu, S. B. Gharpure, J. Org. Chem. 1976, 41,
3092–3096; d) H. M. R. Hoffman, A. Köver, D.
Pauluth, J. Chem. Soc., Chem. Commun. 1985, 812–
814; e) G. A. Schmid, H.-J. Borschberg, Helv. Chim.
Acta 2001, 84, 401–415; f) X. Wang, D. Z. Wang,
Tetrahedron 2011, 67, 3406–3411.
[12] We also tested other potassium and cesium bases.
The use of KOtBu gave a somewhat lower yield (65%)
of 10aa. The use of CsOH·H2O provided a mixture of
oxa-Michael adduct (32%) and 10aa (22%) probably
due to the enhanced nucleophilicity of a cesium
alkoxide.
[13] The structure of 10ma was unambiguously identified
by spectroscopic and X-ray crystallographic analysis.
CCDC 1944310 contains the supplementary
crystallographic data for 10ma. These data can be
obtained free of charge from The Cambridge
[4] For examples of base-catalyzed allylic isomerization,
see: a) H.-X. Zheng, Z.-F. Xiao, C.-Z. Yao, Q.-Q. Li,
X.-S. Ning, Y.-B. Kang, Y. Tang, Org. Lett. 2015, 17,
6102–6105; b) K. Mondal, B. Mondal, S. C. Pan, J.
Org. Chem. 2016, 81, 4835–4840; c) S. Martinez-Erro,
A. Sanz-Marco, A. B. Gómez, A. Vázquez-Romero, M.
S. G. Ahlquist, B. Martín-Matute, J. Am. Chem. Soc.
2016, 138, 13408–13414; d) H.-X. Zheng, C.-Z. Yao,
J.-P. Qu, Y.-B. Kang, Org. Chem. Front. 2018, 5,
1213–1216; e) H.-X. Zheng, J.-P. Qu, Y.-B. Kang, Org.
Chem. Front. 2018, 5, 2349–2352; f) N. Molleti, S.
Martinez-Erro, A. C. Cerdán, A. Sanz-Marco, E.
Gomez-Bengoa, B. Martín-Matute, ACS Catal. 2019, 9,
9134–9139.
Crystallographic
Data
Centre
via
[14] In this case, oxa-Michael adduct was detected in 53%
NMR yield. The poor reactivity of 1q for the allylic
isomerization is probably due to the absence of an
anion-stabilizing substituent at the 3-position.
[15] The reaction of (E)-1-phenylhept-1-en-3-ol with
amide 9a under the standard reaction conditions
resulted in a 57% yield of the corresponding oxa-
Michael adduct.ꢀ
[16] Yates et al. suggested that a direct 1,2-proton shift
was a symmetry forbidden process and calculated to
have a barrier of 39.1 kcal/mol in a model stetter
reaction. a) K. J. Hawkes, B. F. Yates, Eur. J. Org.
[5] For examples of base-promoted tandem allylic
isomerization/electrophilic trapping sequence, see: a) A.
6
This article is protected by copyright. All rights reserved.