10.1002/anie.201912564
Angewandte Chemie International Edition
COMMUNICATION
[1] Boronic Acids: Preparation and Applications in Organic Synthesis,
Medicine and Materials (Ed: D. G. Hall), 2nd ed., Wiley-VCH: Weinheim,
2011.
[11] The dehydration reaction between B2(OH)4 and catechol was only
reported in the following patent: Q. Liu, F. Sun, X. Wang, Z. Gao, Faming
Zhuanli Shengqing, CN 102718787 A 20121010, 2012.
[2] A. Suzuki, Acc. Chem. Res. 1982, 15, 178. (b) N. Miyaura, A. Suzuki,
Chem. Rev. 1995, 95, 2457. (c) Metal-Catalyzed Cross-Coupling
Reactions (Ed: A. D. Meijere), 2nd ed., Wiley-VCH: Weinheim, 2004.
[3] For selected examples of Cu-catalyzed borylation, see: a) C.-T. Yang, Z.-
Q. Zhang, H. Tajuddin, C.-C. Wu, J. Liang, J.-H. Liu, Y.Fu, M. Czyzewska,
P. G. Steel, T. B. Marder, L. Liu, Angew. Chem. Int. Ed. 2012, 51, 528;
Angew. Chem. 2012, 124, 543; b) H. Ito, K. Kubota, Org. Lett. 2012, 14,
890; For selected examples of Ni-catalyzed borylation, see: c) A. S.
Dudnik, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 10693; d) J. Yi, J.-H. Liu,
J. Liang, J.-J. Dai, C.-T. Yang, Y. Fu, L. Liu, Adv. Synth. Catal. 2012, 354,
1685; For selected example of Zn-catalyzed borylation, see: e) S. K. Bose,
K. Fucke, L. Liu, P. G. Steel, T. B. Marder, Angew. Chem. Int. Ed. 2014,
53, 1799; Angew. Chem. 2014, 126, 1829; For selected example of Fe-
catalyzed borylation, see: f) T. C. Atack, S. P. Cook, J. Am. Chem. Soc.
2014, 136, 9521; For selected example of Mn-catalyzed borylation, see:
g) T. C. Atack, S. P. Cook, J. Am. Chem. Soc. 2016, 138, 6139.
[4] a) A. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers, V. K.
Aggarwal, Science 2017, 357, 283; b) D. Hu, L. Wang, P. Li, Org. Lett.
2017, 19, 2770.
[12] M. Newcomb, A. G. Glenn, J. Am. Chem. Soc. 1989, 111, 275.
[13] H. Braunschweig, A. Damme, R. D. Dewhurst, T. Kramer, T. Kupfer, K.
Radacki, E. Siedler, A. Trumpp, K. Wagner, C. Werner, J. Am. Chem. Soc.
2013, 135, 8702.
[14] I. A. Cade, W. Y. Chau, I. Vitorica-Yrezabal, M. J. Ingleson, Dalton Trans.
2015, 44, 7506.
[15] For the nucleophilic substitution reaction of α-boryl anion, see: a) K. Hong,
X. Liu, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 10581; For the
nucleophilic substitution reaction of β-boryl anion, see: b) A. Bonet, C.
Pubill-Ulldemolins, C. Bo, H. Gulyás and E. Fernández, Angew. Chem.,
Int. Ed. 2011, 50, 7158; c) C. Pubill-Ulldemolins, A. Bonet, C. Bo, H.
Gulyás and E. Fernández, Chem. -Eur. J. 2012, 18, 1121; d) T. P. Blaisdell,
T. C. Caya, L. Zhang, A. Sanz-Marco and J. P. Morken, J. Am. Chem. Soc.
2014, 136, 9264; e) L. Fang, L. Yan, F. Haeffner and J. P. Morken, J. Am.
Chem. Soc. 2016, 138, 2508.
[16] For a review, see: a) W. Huang, X. Cheng, Synlett 2017, 28, 148; for
examples of 4-alkyl-1,4-dihydropyridines serving as radical precursors
under the action of external photoredox catalysts, see: b) K. Nakajima, S.
Nojima, K. Sakata, Y. Nishibayashi, ChemCatChem 2016, 8, 1028; c) A
Gutiꢁrrez-Bonet, J. C. Tellis, J. K. Matsui, B. A. Vara, G. A. Molander, ACS
Catal. 2016, 6, 8004; d) W. Chen, Z. Liu, J. Tian, J. Ma, X. Cheng, G. Li,
J. Am. Chem. Soc. 2016, 138, 12312; e) K. Nakajima, S. Nojima, Y.
Nishibayashi, Angew. Chem. Int. Ed. 2016, 55, 14106; Angew. Chem.
2016, 128, 14312; for examples of 4-alkyl-1,4-dihydropyridines serving as
radical precursors under the action of a stoichiometric oxidant, see: f) A
Gutiꢁrrez-Bonet, C. Remeur, J. K. Matsui, G. A. Molander, J. Am. Chem.
Soc. 2017, 139, 12251; for examples of 4-alkyl-1,4-dihydropyridines
serving as radical precursors under direct photoirradiation, see: (g) L.
Buzzetti, A. Prieto, S. R. Roy, P. Melchiorre, Angew. Chem. Int. Ed. 2017,
56, 15039; Angew. Chem. 2017, 129, 15235.
[5] a) J. Wu, L. He, A. Noble, V. K. Aggarwal, J. Am. Chem. Soc. 2018, 140,
10700; b) J. Hu, G. Wang, S. Li, Z. Shi, Angew. Chem. Int. Ed. 2018, 57,
15227; Angew. Chem. 2018, 130, 15477; c) F. Sandfort, F. Strieth-Kalthoff,
F. Klauck, M. James, F. Glorius, Chem. Eur. J. 2018, 24, 17210.
[6] F. W. Friese, A. Studer, Angew. Chem. Int. Ed. 2019, 58, 9561; Angew.
Chem. 2019, 131, 9661.
[7] a) Y. Cheng, C. Mꢀck-Lichtenfeld, A. Studer, J. Am. Chem. Soc. 2018,
140, 6221; b) Y. Cheng, C. Mꢀck-Lichtenfeld, A. Studer, Angew. Chem.
Int. Ed. 2018, 57, 16832; Angew. Chem. 2018, 130, 17074; [c] Q. Liu, J.
Hong, B. Sun, G. Bai, F. Li, G. Liu, Y. Yang, F. Mo, Org. Lett. 2019, 21,
6597; [d] D. Mazzarella, G. Magagnano, B. Schweitzer-Chaput, P.
Melchiorre, ACS Catal. 2019, 9, 5876.
[17] For an example demonstrating generation of alkyl radical utilizing
nucleophilic substitution strategy, see: B. Schweitzer-Chaput, M. A.
Horwitz, E. de Pedro Beato, P. Melchiorre, Nat. Chem. 2019, 11, 129.
[18] The reduction potential the complex 6 is -1.11 V vs Fc+/0 and reduction
potential the excited state complex 6 is -3.87 V vs Fc+/0, which allows for
SET reduction of most alkyl halides, see: J. M. Savéant, J. Am. Chem.
Soc. 1992, 114, 10595.
[8] D. J. Carlsson, K. U. Ingold, J. Am. Chem. Soc. 1968, 90, 7047.
[9] With the addition of 20 mol% and 1 equiv. of NaI to the reaction described
in entry 1 of Table 1, the borylation product 3a was obtained in 11% and
25% GC yields, respectively.
[10] a) L. Zhang, L. Jiao, J. Am. Chem. Soc. 2017, 139, 607; b) L. Zhang, L.
Jiao, Chem. Sci. 2018, 9, 2711; c) L. Zhang, L. Jiao, J. Am. Chem. Soc.
2019, 141, 9124.
This article is protected by copyright. All rights reserved.