10.1002/anie.201906681
Angewandte Chemie International Edition
COMMUNICATION
L. Sang, S. Ge, Angew. Chem. Int. Ed. 2017, 56, 15896–15900; d) G.
Bertuzzi, D. Pecorari, L. Bernardi, M. Fochi, Chem. Commun. 2018, 54,
3977−3980.
Experimental Section
See Supporting Information (SI) for general procedures and all
characterization.
[6]
[7]
For racemic and asymmetric C
Inoue, H. Nagae, H. Tsurugi, K. Mashima, J. Am. Chem. Soc. 2018
140, 7332 7342; b) R. S. J. Proctor, H. J. Davis, R. J. Phipps,
Science 2018, 360, 419 422; c) X. Liu, Y. Liu, G. Chai, B. Qiao, X.
Zhao, Z. Jiang, Org. Lett. 2018, 20, 6298 6301.
−
H aminoalkylation: a) A. Kundu, M.
,
−
−
−
Acknowledgements ((optional))
For a moderately diastereoselective isoquinoline functionalization via
chiral auxiliary, see: H. W. Gibson, M. A. G. Berg, J. C. Dickson, P. R.
Lecavalier, H. Wang, J. S. Merola, J. Org. Chem. 2007, 72, 5759−5770.
For umpolung via aza-allyl anions to α-substituted imines: a) D. J. Cram,
R. D. Guthri, J. Am. Chem. Soc. 1966, 88, 5760−5765; b) Y. Wu, L. Hu,
Z. Li, L. Deng, Nature 2015, 523, 445−450.
This research was supported by the SERB (EMR/2015/000711)
and CSIR-NCL (MLP030926). A. M. A.M. thanks UGC for
fellowship. The support from central NMR facility, NCL is greatly
acknowledged. We thank Prof. U. K. Tambar, UTSW Medical
Center, Dallas and Dr. P. K. Tripathi, NCL, Pune for useful
discussions and their help in writing the manuscript.
[8]
[9]
Imines umpolung via NHC catalysis: J. E. M. Fernando, Y. Nakano,
C. Zhang. D. W. Lupton, Angew. Chem. Int. Ed. 2019, 58, 4007−4011.
Aza-Wittig rearrangements are considerably slower than Wittig and
less selective: a) C. Vogel, Synthesis 1996, 497
Everett, J. P. Wolfe, J. Org. Chem. 2015, 80, 9041
Åhman, T. Jarevång, P. Somfai, J. Org. Chem. 1996
8148 8159; d) J. C. Anderson, A. Flaherty, M. E. Swarbrick, J. Org.
Chem. 2000, 65, 9152 9156.
−
505; b) R. K.
9056; c) J.
61,
Keywords: Azaarene C–H allylation • Asymmetric
organocatalysis • Aza-Wittig rearrangement • Rearomatization •
TADDOL phosphite
−
,
−
−
[10] I. Takeuchi, Y. Shinata, Y. Hamada, Heterocycles 1985, 23, 1635−1638.
[11] For the synthesis and use of TADDOL phosphites as organocatalyst,
see: a) X. Linghu, J. R. Potnick, J. S. Johnson, J. Am. Chem. Soc. 2004,
126, 3070−3071; b) M. R. Nahm, X. Linghu, J. R. Potnick, C. M. Yates,
P. S. White, J. S. Johnson, Angew. Chem. Int. Ed. 2005, 44,
2377−2379; c) M. R. Nahm, J. R. Potnick, P. S. White, J. S. Johnson, J.
Am. Chem. Soc. 2006, 128, 2751−2756; d) M. R. Garrett, J. C. Tarr, J.
S. Johnson, J. Am. Chem. Soc. 2007, 129, 12944−12945.
[1]
[2]
a) J. P. Michael, Nat. Prod. Rep. 2008, 25, 166−187; b) Alkaloid
Synthesis, Topics in Current Chemistry 2012, vol 309; c) C. Piemontesi,
Q. Wang, J. Zhu, Angew. Chem. 2016, 128, 6666–6670; d) G. Chelucci,
Chem. Soc. Rev. 2006, 35, 1230–1243; e) M. Chrzanowska, A.
Grajewska, M. D. Rozwadowska, Chem. Rev. 2016, 116,
12369−12465; f) V. , D. , R. W. Bates, R. W. J. Org. Chem.
2018, 83, 9088–9095.
For review: a) V. Farina, J. T. Reeves, C. H. Senanayake, J. J. Song,
Chem. Rev. 2006, 106, 2734−2793; b) B. E. Maryanoff, H.-C. Zhang, J.
H. Cohen, I. J. Turchi, C. A. Maryanoff, Chem. Rev. 2004, 104,
1431−1628; c) M. Baumann, I. R. Baxendale, Beilstein J. Org. Chem.
2013, 9, 2265–2319. For the construction of asymmetric erythrinane
skeleton: a) Y. Tsuda, S. Hosoi, N. Katagiri, C. Kaneko, T. Sano, Chem.
Pharm. Bull. 1993, 41, 2087−2095; b) R-Q. Xu, Q. Gu, W-T. Wu, Z-A.
Zhao, S-L. You, J. Am. Chem. Soc. 2014, 136, 15469−15472; c) M.
Paladino, J. Zaifman, M. A. Ciufolini, Org. Lett. 2015, 17, 3422−3425.
For asymmetric jamtine synthesis: N. S. Simpkins, C. D. Gill, Org. Lett.
2003, 5, 535−537. For quinolactacins: B. Clark, R. J. Capon, E. Lacey,
S. Tennant, J. H. Gill, Org. Biomol. Chem. 2006, 4, 1512−1519.
[12] a) A. Motaleb, A. Bera, P. Maity, Org. Biomol. Chem. 2018, 16,
5081−5085; b) G. Wang, W. Hu, Z. Hu, Y. Zhang, W. Yao, L. Li, Z. Fu,
W. Huang, Green Chem. 2018, 20, 3302−3307.
[13] a) W. Yun-Dong, K. N. Houk, J. A. Marshall, J. Org. Chem. 1990, 55,
1421−1423; b) C. R. Kennedy, J. A. Guidera, E. N. Jacobsen, ACS
Cent. Sci. 2016, 2, 416−423.
[14] Analysis of crude 1H NMR showed intermediate 3 remained intact. LDA
remained ineffective, whereas n-BuLi and cyanomethyl lithium were
reactive towards the phosphorous center.
[15] For stereoselectivity in zwitterionic [2,3] rearrangements, see: a) T. H.
West, S. S. M. Spoehrle, K. Kasten, J. E. Taylor, A. D.Smith, ACS Catal.
2015, 5, 7446−7479; b) A. Nash, A. Soheili, U. K. Tambar, Org. Lett.
2013, 15, 4770−4773.
[3]
For asymmetric functionalization starting from C–2 functionalized
azaarenes: a) L. Li, C.-Y. Wang, R. Huang, M. R. Biscoe, Nat. Chem.
2013, 5, 607−612; b) D. Wang, L. Wu, F. Wang, X. Wan, P. Chen, Z.
Lin, G. Liu, J. Am. Chem. Soc. 2017, 139, 6811−6814; c) S. D. Friis, M.
T. Pirnot, L. N. Dupuis, S. L. Buchwald, Angew. Chem. Int. Ed. 2017,
56, 7242−7246; d) Y. Yin, Y. Dai, H. Jia, J. Li, L. Bu, B. Qiao, X. Zhao,
Z. Jiang, J. Am. Chem. Soc. 2018, 140, 6083–6087, and references
3−8 herein; e) X. Jiang, P. Boehm, J. F. Hartwig, J. Am. Chem. Soc.
2018, 140, 1239-1242; f) S. Panda, A. Coffin, Q. N. Nguyen D. J.
Tantillo, J. M. Ready, Angew. Chem. Int. Ed. 2016, 55, 2205−2209.
For achiral or racemic azaarene C–H functionalization: a) K. Murakami,
S. Yamada, T. Kaneda, K. Itami, Chem. Rev. 2017, 117, 9302−9332; b)
L. Zhang, Z-Q. Liu, Org. Lett. 2017, 19, 6594−6597; c) P. S. Fier, J. Am.
Chem. Soc. 2017, 139, 9499−9502; d) N. Hara, T. Saito, K. Semba, N.
Kuriakose, H. Zheng, S. Sakaki, Y. Nakao, J. Am. Chem. Soc. 2018,
140, 7070−7073; e) C. Bosset, H. Beucher, G. Bretel, E. Pasquier, L.
Queguiner, C. Henry, A. Vos, J. P. Edweards, L. Meerpoel, D. Berthelot,
Org. Lett. 2018, 20, 6003−6006, and references herein.
[16] The change in alkene geometry for anionic [2,3] rearrangement was
shown to have an unpredictable effect in diastereoselectivity: a) T.
Nakai, K. Mikami, Chem. Rev. 1986, 86, 885−902; b) K. Tomooka, N.
Komine, T. Nakai, Chirality 2000, 12, 505–509. In zwitterionic oxa-[2,3]
rearrangement, the enantiomeric ratio varies for diastereomers: M. P.
Doyle, D. C. Forbes, M. M. Vasbinder, C. S. Peterson, J. Am. Chem.
Soc. 1998, 120, 7653−7654.
[17] R. W. Hoffmann, Angew. Chem. Int. Ed. 1979, 18, 563−572.
[18] a) F. Haeffner, K. N. Houk, S. M. Schulze, J. K. Lee, J. Org. Chem.
2003, 68, 2310−2316; b) M. N. Alam, K. M. Lakshmi, P. Maity, Org.
Biomol. Chem. 2018, 16, 8922−8926.
[4]
[19] Phosphite 2b was used instead of best catalyst 2k to obtain less
crowded 1H NMR in the alkane region (see SI).
[20] For re-aromatization driven reactivity: E. L. Fisher, T. H. Lambert, Org.
Lett. 2009, 11, 4108−4110.
[5]
For asymmetric C–H alkylation: a) G. Song, G.; W. W. N. O, Z. Hou, J.
Am. Chem. Soc. 2014, 136, 12209−12212; b) J. Llaveria, D. Leonori, V.
K. Aggarwal, J. Am. Chem. Soc. 2015, 137, 10958−10961; c) S. Yu, H.
This article is protected by copyright. All rights reserved.