Journal of the American Chemical Society
Communication
ACKNOWLEDGMENTS
■
This work was funded by NIH R01GM094924 and
R01GM095970. We thank Drs. X. Huang and A. Mrse for
NMR, Dr. Y. Su for MS, and Dr. J. J. La Clair for figure assistance.
REFERENCES
■
(1) Mercer, A. C.; Burkart, M. D. Nat. Prod. Rep. 2007, 24, 750.
(2) (a) Smith, S.; Tsai, S. C. Nat. Prod. Rep. 2007, 24, 1041. (b) Khosla,
C.; Tang, Y.; Chen, A. Y.; Schnarr, N. A.; Cane, D. E. Annu. Rev. Biochem.
2007, 76, 195. (c) Leibundgut, M.; Maier, T.; Jenni, S.; Ban, N. Curr.
Opin. Struct. Biol. 2008, 18, 714. (d) Haushalter, R. W.; Filipp, F. V.; Ko,
K. S.; Yu, R.; Opella, S. J.; Burkart, M. D. ACS Chem. Biol. 2011, 6, 413.
(3) (a) Parris, K. D.; Lin, L.; Tam, A.; Mathew, R.; Hixon, J.; Stahl, M.;
Fritz, C. C.; Seehra, J.; Somers, W. S. Structure 2000, 8, 883. (b) Qiu, X.;
Janson, C. A. Acta Crystallogr. 2004, D60, 1545.
́
(4) Płoskon, E.; Arthur, C. J.; Kanari, A. L.; Wattana-amorn, P.;
Williams, C.; Crosby, J.; Simpson, T. J.; Willis, C. L.; Crump, M. P. Chem
Biol. 2010, 17, 776.
(5) (a) Chan, D. I.; Vogel, H. J. Biochem. J. 2010, 430, 1. (b) Crosby, J.;
Crump, M. P. Nat. Prod. Rep. 2012, 29, 1111.
(6) (a) Jenni, S.; Leibundgut, M.; Maier, T.; Ban, N. Science 2006, 311,
1263. (b) Maier, T.; Jenni, S.; Ban, N. Science 2006, 311, 1258.
(7) Veyron-Churlet, R.; Bigot, S.; Guerrini, O.; Verdoux, S.; Malaga,
W.; Daffe’, M.; Zerbib, D. J. Mol. Biol. 2005, 353, 847.
(8) (a) Worthington, A. S.; Burkart, M. D. Org. Biomol. Chem. 2006, 4,
44. (b) Worthington, A. S.; Rivera, H.; Torpey, J. W.; Alexander, M. D.;
Burkart, M. D. ACS Chem. Biol. 2006, 1, 687. (c) Kapur, S.;
Worthington, A. S.; Tang, Y.; Cane, D. E.; Burkart, M. D.; Khosla, C.
Bioorg. Med. Chem. Lett. 2008, 18, 3034. (d) Worthington, A. S.; Hur, G.
H.; Meier, J. L.; Cheng, Q.; Moore, B. S.; Burkart, M. D. ChemBioChem
2008, 9, 2096.
(9) (a) Qiao, C.; Wilson, D. J.; Bennett, E. M.; Aldrich, C. C. J. Am.
Chem. Soc. 2007, 129, 6350. (b) Liu, Y.; Zheng, T.; Bruner, S. D. Chem.
Biol. 2011, 18, 1482. (c) Sundlov, J. A.; Shi, C.; Wilson, D. J.; Aldrich, C.
C.; Gulick, A. M. Chem. Biol. 2012, 19, 188. (d) Mitchell, C. A.; Shi, C.;
Aldrich, C. C.; Gulick, A. M. Biochemistry 2012, 51, 3252.
(10) (a) Leesong, M.; Henderson, B. S.; Gilling, J. R.; Schwab, J. M.;
Smith, J. L. Structure 1996, 4, 253. (b) Schwab, J. M.; Li, W. B.; Ho, C. K.;
Townsend, C. A.; Salituro, G. M. J. Am. Chem. Soc. 1984, 106, 7293.
(11) (a) Brock, D. J.; Kass, L. R.; Bloch, K. J. J. J. Biol. Chem. 1967, 242,
4432. (b) Helmkamp, G. M., Jr.; Brock, D. J.; Bloch, K. J. J. J. Biol. Chem.
1968, 243, 3229. (c) Kass, L. R. J. Biol. Chem. 1968, 243, 3223. (d) Endo,
K.; Helmkamp, D. M.; Bloch, K. J. Biol. Chem. 1970, 245, 4293.
(12) Meier, J. L.; Haushalter, R. W.; Burkart, M. D. Bioorg. Med. Chem.
Lett. 2010, 20, 4936.
(13) Ishikawa, F.; Haushalter, R. W.; Burkart, M. D. J. Am. Chem. Soc.
2012, 134, 769.
(14) (a) Rock, C. O.; Jackowski, S. J. Biol. Chem. 1982, 257, 10759.
(b) La Clair, J. J.; Foley, T. L.; Schegg, T. R.; Regan, C. M.; Burkart, M.
D. Chem. Biol. 2004, 11, 195.
(15) (a) Revill, W. P.; Bibb, M. J.; Hopwood, D. A. J. Bacteriol. 1996,
178, 5660. (b) Crosby, J.; Byrom, K. J.; Hitchman, T. S.; Cox, R. J.;
Crump, M. P.; Findlow, I. S.; Bibb, M. J.; Simpson, T. J. FEBS Lett. 1998,
433, 132. (c) Arthur, C.; Cox, R. J.; Crosby, J.; Rahman, M. M.; Simpson,
T. J.; Soulas, F.; Spogli, R.; Azafranska, A. E.; Westcott, J.; Winfield, C. J.
ChemBioChem 2002, 3, 253.
Figure 3. Solution-phase NMR spectra of crypto-ACP demonstrating
probe sequestration. (a) 1H,15N-HSQC spectra of purified crypto-ACP
containing 15N-enriched E. coli apo-AcpP16b modified chemoenzymati-
cally with 4a (blue) and holo-AcpP (green). Significant shifts are
annotated by residue number. (b) Structure of AcpP highlighting the
residues that showed the largest chemical shift perturbations. (c)
Chemical shift perturbation plot of crypto-AcpP vs holo-AcpP.
sulfonyl alkyne scaffold. The synthesis of this probe is
straightforward, offering easy access to synthetic modulation.
The probe itself is stable toward one-pot chemoenzymatic
methodology, is sequestered within the hydrophobic cleft of
crypto-AcpP, and forms the designed AcpP−FabA cross-linked
product in high yield. This scaffold could offer optimized
pantetheine analogues for use in investigating protein−protein
interactions for type-I and type-II PKS biosynthetic pathways.
This sulfonyl 3-alkynyl pantetheinamide provides a general
approach for elucidating interactions of ACPs with other DH-like
enzymes, such as the product template (PT) domain in fungal
nonreducing PKSs17 and the thioester hydrolase (TH) domain
in fungal type-I iterative PKSs.18
(16) (a) Kosa, N. M.; Haushalter, R. W.; Smith, A. R.; Burkart, M. D.
Nat. Methods 2012, 9, 981. (b) Zornetzer, G. A.; Fox, B. G.; Markley, J. L.
Biochemistry. 2006, 45, 5217.
(17) Crawford, J. M.; Korman, T. P.; Labonte, J. W.; Vagstad, A. L.;
Hill, E. A.; Kamari-Bidkorpeh, O.; Tsai, S. C.; Townsend, C. A. Nature
2009, 461, 1139.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and additional data. This material is
■
S
(18) (a) Moriguchi, T.; Kezuka, Y.; Nonaka, T.; Ebizuka, Y.; Fujii, I. J.
Biol. Chem. 2010, 285, 15637. (b) Scott, A. I.; Beadling, L. C.;
Georgopapadakou, N. H.; Subbarayan, C. R. Bioorg. Chem. 1974, 3, 238.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
D
dx.doi.org/10.1021/ja4042059 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX