Please do not adjust margins
Green Chemistry
Page 4 of 5
COMMUNICATION
Journal Name
regenerated by a two electron oxidation step. Notably, the only
stoichiometric by-product of the aerobic C–H alkenylation is H2O.
DOI: 10.1039/C7GC03353B
A. R. Kapdi, Angew. Chem. Int. Ed., 2009, 48, 9792-9826.
a) S. De Sarkar, W. Liu, S. I. Kozhushkov and L. Ackermann,
Adv. Synth. Catal., 2014, 356, 1461-1479; b) P. B. Arockiam,
C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012, 112, 5879-
5918; c) L. Ackermann and R. Vicente, Top. Curr. Chem., 2010,
292, 211-229.
a) P. Nareddy, F. Jordan and M. Szostak, ACS Catal., 2017,
DOI: 10.1021/acscatal.7b01645, 5721-5745; b) A. Schischko,
H. Ren, N. Kaplaneris and L. Ackermann, Angew. Chem. Int.
Ed., 2017, 56, 1576-1580; c) M. Moselage, J. Li, F. Kramm and
L. Ackermann, Angew. Chem. Int. Ed., 2017, 56, 5341-5344; d)
M. Simonetti, G. J. P. Perry, X. C. Cambeiro, F. Juliá-
Hernández, J. N. Arokianathar and I. Larrosa, J. Am. Chem.
Soc., 2016, 138, 3596-3606; e) J. Hubrich and L. Ackermann,
Eur. J. Org. Chem., 2016, 3700-3704; f) R. Mei, C. Zhu and L.
Ackermann, Chem. Commun., 2016, 52, 13171-13174; g) P. B.
Arockiam, C. Fischmeister, C. Bruneau and P. H. Dixneuf,
Angew. Chem. Int. Ed., 2010, 49, 6629-6632; h) L. Ackermann
and M. Mulzer, Org. Lett., 2008, 10, 5043-5045; i) L.
Ackermann, R. Vicente and A. Althammer, Org. Lett., 2008,
10, 2299-2302.
2.
3.
4.
5.
a) N. Y. P. Kumar, T. Rogge, S. R. Yetra, A. Bechtoldt, E. Clot
and
L.
Ackermann,
Chem.
Eur.
J.,
DOI:
10.1002/chem.201703680; b) C.-S. Wang, P. H. Dixneuf and
J.-F. Soulé, ChemCatChem, 2017, 9, 3117-3120; c) L.
Ackermann, P. Novák, R. Vicente and N. Hofmann, Angew.
Chem. Int. Ed., 2009, 48, 6045-6048.
Scheme 5: Proposed mechanistic cycle for the ruthenium oxidase.
a) S. Warratz, D. J. Burns, C. Zhu, K. Korvorapun, T. Rogge, J.
Scholz, C. Jooss, D. Gelman and L. Ackermann, Angew. Chem.
Int.Ed., 2017, 56, 1557-1560; b) J. A. Leitch and C. G. Frost,
Chem. Soc. Rev., 2017, DOI: 10.1039/C7CS00496F; c) J. Li, K.
Korvorapun, S. De Sarkar, T. Rogge, D. J. Burns, S. Warratz
and L. Ackermann, Nat. Commun., 2017, 8, 15430; d) J. Li, S.
De Sarkar and L. Ackermann, Top. Organomet. Chem., 2016,
55, 217-257; e) J. Li, S. Warratz, D. Zell, S. De Sarkar, E. E.
Ishikawa and L. Ackermann, J. Am. Chem. Soc., 2015, 137,
13894-13901; f) A. J. Paterson, S. St John-Campbell, M. F.
Mahon, N. J. Press and C. G. Frost, Chem. Commun., 2015, 51,
12807-12810; g) N. Hofmann and L. Ackermann, J. Am. Chem.
Soc., 2013, 135, 5877-5884; h) O. Saidi, J. Marafie, A. E. W.
Ledger, P. M. Liu, M. F. Mahon, G. Kociok-Köhn, M. K.
Whittlesey and C. G. Frost, J. Am. Chem. Soc., 2011, 133,
19298-19301; i) L. Ackermann, N. Hofmann and R. Vicente,
Org. Lett., 2011, 13, 1875-1877.
Conclusion
In summary, we have reported on the first merger of oxidative
ruthenium(II)-catalysed C–H functionalisation with a biomass-
derived solvents. Thus, γ-valerolactone as green reaction
medium set the stage for aerobic twofold C–H
functionalizations between benzoic acids and alkenes. The
oxidase
ruthenium(II)
biscarboxylate
catalysis
was
characterized by excellent levels of positional and chemo-
selectivity, fully tolerating reactive bromo, iodo or hydroxyl
groups. The oxidative double C–H functionalizations employed
molecular oxygen as the sole oxidant, generating
environmentally-benign H2O as the only stoichiometric by-
product.
6.
a) J. A. Leitch, H. P. Cook, Y. Bhonoah and C. G. Frost, J. Org.
Chem., 2016, 81, 10081-10087; b) L. Ackermann, J. Pospech,
K. Graczyk and K. Rauch, Org. Lett., 2012, 14, 930-933; c) L.
Ackermann, A. V. Lygin and N. Hofmann, Angew. Chem. Int.
Ed., 2011, 50, 6379-6382; d) L. Ackermann and J. Pospech,
Org. Lett., 2011, 13, 4153-4155.
Acknowledgements
Generous Support by the H-CCAT program (Horizon2020 project
ID 720996) and the DFG (Gottfried-Wilhelm-Leibniz prize) is
gratefully acknowledged. The Universities of Perugia and
Göttingen are also thankfully acknowledged for financial
support.
7.
8.
L. Ackermann, Acc. Chem. Res., 2014, 47, 281-295.
a) A. Bechtoldt, C. Tirler, K. Raghuvanshi, S. Warratz, C.
Kornhaaß and L. Ackermann, Angew. Chem. Int. Ed., 2016, 55,
264-267; b) S. Warratz, C. Kornhaaß, A. Cajaraville, B.
Niepötter, D. Stalke and L. Ackermann, Angew. Chem. Int. Ed.,
2015, 54, 5513-5517.
References
9.
a) M. Beller, G. Centi and L. Sun, ChemSusChem, 2017, 10, 6-
13; b) T. M. Attard, A. J. Hunt, A. S. Matharu, J. A. Houghton
and I. Polikarpov, in Introduction to Chemicals from Biomass,
eds. J. Clark and F. Deswarte, John Wiley & Sons, Ltd,
Chichester, UK, 2nd edn., 2015, ch. 2, pp. 31-52.
a) A. Osatiashtiani, A. F. Lee and K. Wilson, J. Chem. Technol.
Biot., 2017, 92, 1125-1135; b) P. Pongrꢀcz, L. Kollꢀr and L. T.
Mika, Green Chem., 2016, 18, 842; c) Z. Zhang,
1.
a) D. L. Davies, S. A. Macgregor and C. L. McMullin, Chem.
Rev., 2017, 117, 8649-8709; b) T. Gensch, M. N. Hopkinson, F.
Glorius and J. Wencel-Delord, Chem. Soc. Rev., 2016, 45,
2900-2936; c) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen and J.-Q.
Yu, Angew. Chem. Int. Ed., 2016, 55, 10578-10599; d) M.
Moselage, J. Li and L. Ackermann, ACS Catal., 2016, 6, 498-
525; e) L. Ackermann, Chem. Rev., 2011, 111, 1315-1345; f) X.
10.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins