10.1002/adsc.201900161
Advanced Synthesis & Catalysis
unsaturated esters with excellent results (up to 99%
yield and >99% ee). In addition, this asymmetric
hydrogenation methodology displayed high catalytic
activity, the gram-scale asymmetric hydrogenation
was performed efficiently even in the presence of
0.05 mol% (S/C = 2 000) catalyst loading with full
conversion, 99% yield and 99% ee. Moreover, the
chiral organoboronic esters have been emerged as
important and versatile functional groups, the
hydrogenation product was easily converted to other
versatile synthetic intermediates, such as methyl (S)-
3-hydroxy-3-phenylpropanoate and methyl (S)-3-
(furan-2-yl)-3-phenylpropanoate.
Chem. Soc. 2009, 131, 5024-5025; e) D. G. Hall,
Boronic Acids. Preparation, Applications in
Organic Synthesis and Medicine, Wiley-VCH,
Weinheim, 2005; f) H. K. Scott, V. K. Aggarwal,
Chem. Eur. J. 2011, 17, 13124-13132; g) C. M.
Crudden, D. Edwards, Eur. J. Org. Chem. 2003
,
4695-4712; h) Z. Niu, J. Chen, Z. Chen, M. Ma, C.
Song, and Y. Ma, J. Org. Chem. 2015, 80, 602-608.
[3] a) S. Kobayashi, P. Xu, T. Endo, M. Ueno, T.
Kitanosono, Angew. Chem. Int. Ed. 2012, 51,
12763-12766; b) J.-E. Lee and J. Yun, Angew.
Chem. Int. Ed. 2008, 47, 145-147; c) J.-B. Xie, S.
Lin, J. Luo, J. Wu, T. R. Winn and G. Li, Org.
Chem. Front. 2015, 2, 42-46; d) K. Toribatake, L.
Zhou, A. Tsuruta, H. Nishiyama; Tetrahedron
2013, 69, 3551-3560; e) J. K. Park, H. H. Lackey,
M. D. Rexford, K. Kovnir, M. Shatruk, and D. T.
McQuade, Org. Lett. 2010, 12, 5008-5011; f) J.-L.
Zhang, L.-A. Chen, R.-B. Xu, C.-F. Wang, Y.-P.
Ruan, A.-E. Wang, P.-Q. Huang, Tetrahedron:
Asymmetry 2013, 24, 492-498; g) V. Lillo, A.
Prieto, A. Bonet, M. M. Díaz-Requejo, E.
Fernández, Organometallics, 2009, 28, 659-662; h)
J. M. O’Brien, K. Lee, and A. H. Hoveyda, J. Am.
Chem. Soc. 2010, 132, 10630-10633.
Experimental Section
General procedure for the asymmetric hydrogenation
with S/C = 100: In the argon-filled glovebox, a solution of
ZhaoPhos (9.6 mg, 0.011 mmol) and [Rh(nbd)2]BF4 (3.75
mg, 0.01 mmol) in 1.0 mL anhydrous CH2Cl2 was stirred
at room temperature for 30 min. 100 μL of the resulting
solution was transferred by syringe into a vial charged with
1 (0.1 mmol) in 1.0 mL anhydrous CH2Cl2. The vials were
transferred to an autoclave, which was then charged with
50 atm of H2 and stirred at 30 °C for 6 h. The hydrogen
gas was released slowly and the solution was concentrated
and passed through a short column of silica gel to remove
the metal complex. The crude product was analyzed by 1H
NMR analysis for conversion (always >99%) and by chiral
HPLC for detremination of the enantiomeric excess before
purification by flash silica gel chromatography to isolate
the final product.
[4] H. Wu, S. Radomkit, J. M. O’Brien, A. H. Hoveyda,
J. Am. Chem. Soc. 2012, 134, 8277-8285.
[5] a) D. Noh, S. K. Yoon, J. Won, J. Y. Lee, J. Yun,
Chem. Asian J. 2011, 6, 1967-1969; b) H. M.
Nelson, B. D. Williams, J. Mirꢀ, F. D. Toste, J. Am.
Chem. Soc. 2015, 137, 3213-3216; c) J. R. Smith,
B. S. L. Collins, M. J. Hesse, M. A. Graham, E. L.
Acknowledgements
Myers, V. K. Aggarwal, J. Am. Chem. Soc. 2017
,
We are grateful for financial support from the National
Natural Science Foundation of China (Grant No. 21432007,
21502145), the Wuhan Morning Light Plan of Youth Science and
Technology (Grant No. 2017050304010307), the Fundamental
Research Funds for Central Universities (Grant No.
2042018kf0202), Shenzhen Nobel Prize Scientists Laboratory
Project (Grant No. C17783101), Science and Technology
139, 9148-9151; d) Y. Cai, X.-T. Yang, S.-Q.
Zhang, F. Li, Y.-Q. Li, L.-X. Ruan, X. Hong, S.-L.
Shi, Angew. Chem. Int. Ed. 2018, 57, 1376-1380; e)
H. Iwamoto, T. Imamoto, H. Ito, Nature Commun.
2018, 9, 2290-2299.
[6] J. Guo, B. Cheng, X. Shen, Z. Lu, J. Am. Chem.
Soc. 2017, 139, 15316-15319.
[7] a) S. Nave, R. P. Sonawane, T. G. Elford, V. K.
Aggarwal, J. Am. Chem. Soc. 2010, 132, 17096-
17098; b) V. Bagutski, A. Ros, V. K. Aggarwal,
Tetrahedron 2009, 65, 9956-9960.
Innovation
Committee
of
Shenzhen
(Grant
No.
KQTD20150717103157174, JSGG 20170821140353405 and
JSGG 20160608140847864). The Program of Introducing
Talents of Discipline to Universities of China (111 Project) is
also appreciated.
[8] For some selected examples, see: a) M. Ueda, A.
References
Saitoh, N. Miyaura, J. Organomet. Chem. 2002
,
642, 145-147; b) J. B. Morgan, J. P. Morken, J.
Am. Chem. Soc. 2004, 126, 15338-15339; c) W. J.
Moran, J. P. Morken, Org. Lett. 2006, 8, 2413-
2415; d) A. Paptchikhine, P. Cheruku, M. Engman,
P. G. Andersson, Chem. Commun. 2009, 5996-
5998; e) J. Mazuela, P.-O. Norrby, P. G.
Andersson, O. Pꢁmies, M. Diꢂguez, J. Am. Chem.
Soc. 2011, 133, 13634-13645; f) A. Ganiꢃ, A.
Pfaltz, Chem.-Eur. J. 2012, 18, 6724-6728; g) M.
Biosca, A. Paptchikhine, O. Pꢁmies, P. G.
Andersson, M. Diꢂguez, Chem.-Eur. J. 2015, 21,
3455-3464.
[1] For some selected reviews: a) H. C. Brown, B.
Singaram, Acc. Chem. Res. 1988, 21, 287-293; b)
H. C. Brown, V. P. Ramachandran, Pure Appl.
Chem. 1991, 63, 307-316; c) H. C. Brown, V. P.
Ramachandran, J. Organomet. Chem. 1995, 500,
1−19; d) C. M. Crudden, B. W. Glasspoole, C. J.
Lata, Chem. Commun. 2009, 6704-6716; e) C.
Sandford, V. K. Aggarwal, Chem. Commun. 2017
53, 5481-5494.
,
[2] a) B. S. L. Collins, C. M. Wilson, E. L. Myers, V.
K. Aggarwal, Angew. Chem. Int. Ed. 2017, 56,
11700-11733; b) J. L. Stymiest, V. Bagutski, R. M.
French, V. K. Aggarwal, Nature 2008, 456, 778-
782; c) J. C. H. Lee, D. G. Hall, J. Am. Chem. Soc.
2010, 132, 5544-5545; d) D. Imao, B. W.
Glasspoole, V. S. Laberge, C. M. Crudden, J. Am.
[9] J. S. Reis, L. H. Andrade, Tetrahedron: Asymmetry
2012, 23, 1294-1300.
[10] a) P. B. Brondani, G. de Gonzalo, M. W. Fraaije,
L. H. Andrade, Adv. Synth. Catal. 2011, 353,
4
This article is protected by copyright. All rights reserved.