8
Tetrahedron
ACCEPTED MANUSCRIPT
Angew. Chem. Int. Ed. 2005, 44, 214; (c) Purser, S.; Moore, P. R.;
bath. NaBH4 (4.7 mg, 0.12 mmol) was added portion wise. The
Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320; (d) Smits, R.;
Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727;
(e) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2010, 111, 455.
(a) Sani, M.; Candiani, G.; Pecker, F.; Malpezzi, L.; Zanda, M.
Tetrahedron Lett. 2005, 46, 2393; (b) Wang, J.; Sanchez-Rosello, M.;
Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V.
A.; Liu, H. Chem. Rev. 2014, 114, 2432; (c) O’Hagan, D. J. Fluorine
Chem. 2010, 131, 1071; (d) Rodgers, J. D.; Cocuzza, A. J.; Bilder, D. M.
U. S. Patent 6204262, 2001;(e) Bindschaedler, P.; Von Deyn, W.;
Koerber, K.; Kaiser, F.; Rack, M.; Culbertson, D. L.; Neese, P.; Braun, F.
J. U. S. Patent 9732051, 2017.
reaction mixture was stirred for 2 h at the same temperature.
After completion of the reaction, ethanol was evaporated off and
brine (3 ml) was added to the residue. The mixture was extracted
with ethyl acetate (2×5 ml) and concentrated. The crude products
were purified by column chromatography with petroleum
ether/ethyl acetate = 20:1~10:1 to afford the desired product 5.
3
4.4.1 S-((2R,4R)-4-(4-(benzyloxy)-3-nitrophenyl)-1,1,1-trifluoro-
4-hydroxybutan-2-yl) ethanethioate (5). Light yellow green oil;
59.5 mg; 69% yield; 92% ee; 99:1 dr; [α]D = -10.2 (c 0.94,
CHCl3); the enantiomeric excess was determined by HPLC on
Chiralpak IA column: ethanol/n-hexane = 5/95; flow rate = 1.0
mL/min; UV detection at 254 nm; tR = 26.48 min (major), 19.70
20
4
5
For reviews on asymmetric sulfa-Michael addition, see: (a) Enders, D.;
Luettgen, K.; Narine, A. A. Synthesis 2007, 7, 959; (b) Chauhan, P.;
Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807; (c) Shaw, S.; White,
J. D. Synthesis 2016, 48, 2768.
1
For reviews of asymmetric reactions to synthesis of trifluoromethylated
compounds, see: (a) Shibata, N.; Mizuta, S.; Kawai, H. Tetrahedron:
Asymmetry 2008, 19, 2633; (b) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F.
D. Chem. Rev. 2015, 115, 826; (c) Noda, H.; Kumagai, N.; Shibasaki, M.
Asian J. Org. Chem. 2018, 7, 599. For recent examples, see: (d) Wu, Y.;
Hu, L.; Li, Z.; Deng, L. Nature 2015, 523, 445; (e) Hu, L.; Wu, Y.; Li, Z.;
Deng, J. Am. Chem. Soc. 2016, 138, 15817; (f) Chen, P.; Yue, Z.; Zhang,
J.; Lv, X.; Wang, L.; Zhang, J. Angew. Chem. Int. Ed. 2016, 55, 13316; (g)
Calvo, R.; Comas-Vives, A.; Togni, A.; Katayev, D. Angew. Chem. Int.
Ed. 2018, 57, 1; (h) Chen, X.-Y.; Liu, Q.; Chauhan, P.; Enders, D. Angew.
Chem. Int. Ed. 2018, 57, 3862; (i) Wang, H.; Zhang, L.; Tu, Y.; Xiang, R.;
Guo, Y. L.; Zhang, J. Angew. Chem. Int. Ed. 2018, 57, 15787; (j) Hu, B.;
Bezpalko, M. W.; Fei, C.; Dickie, D. A.; Foxman, B. M.; Deng, L. J. Am.
Chem. Soc. 2018, 140, 13913; (k) Hu, B.; Deng, L. Angew. Chem. Int. Ed.
2018, 57, 2233; (l) Li, Z.; Hu, B.; Wu, Y.; Fei, C.; Deng, L. Proc Natl
Acad Sci U S A 2018, 115, 1730; (m) Hu, B.; Deng, L. J. Org. Chem.
2019, 84, 994; (n) Martinez-Pardo, P.; Blay, G.; Vila, C.; Sanz-Marco, A.;
Munoz, M. C.; Pedro, J. R. J. Org. Chem. 2019, 84, 314; (o) Wang, C.; Li,
N.; Zhu, W.-J.; Gong, J.-F.; Song, M.-P. J. Org. Chem. 2019, 84,191.
(a) Dong, X.-Q.; Fang, X.; Wang, C.-J. Org. Lett. 2011, 13, 4426; (b)
Dong, X.-Q.; Fang, X.; Tao, H.-Y.; Zhou, X.; Wang, C.-J. Adv. Synth.
Catal. 2012, 354, 1141; (c) Fang, X.; Li, Q.-H.; Tao, H.-Y.; Wang, C.-J.
Adv. Synth. Catal. 2013, 355, 327; (d) Su, Y.; Ling, J.-B.; Zhang, S.; Xu,
P.-F. J. Org. Chem. 2013, 78, 11053; (e) Fang, X.; Dong, X.-Q.; Liu, Y.-
Y.; Wang, C.-J. Tetrahedron Lett. 2013, 54, 4509; (f) Chen, W.; Jing, Z.;
Chin, K. F.; Qiao, B.; Zhao, Y.; Yan, L.; Tan, C.-H.; Jiang, Z. Adv. Synth.
Catal. 2014, 356, 1292; (g) Chen, J.; Meng, S.; Wang, L.; Tang, H.;
Huang, Y. Chem. Sci. 2015, 6, 4184; (h) Wang, Y.-F.; Wu, S.; Karmaker,
P. G.; Sohail, M.; Wang, Q.; Chen, F.-X. Chen, Synthesis 2015, 47, 1147;
For selected examples, see: (a) Li, H.; Wang, J.; Zu, L.; Wang, W.
Tetrahedron Lett. 2006, 47, 2585; (b) Li, H.; Zu, L.; Wang, J.; Wang, W.
Tetrahedron Lett. 2006, 47, 3145; (c) Kimmel, K. L.; Robak, M.. T.;
Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 8754; (d) Monaco, M. R.;
Prevost, S.; List, B. J. Am. Chem. Soc. 2014, 136, 16982; (e) Phelan, J. P.;
Patel, E. J.; Ellman, J. A. Angew. Chem. Int. Ed. 2014, 53, 11329; (f)
Wang, R.; Liu, J.; Xu, J. Adv. Synth. Catal. 2015, 357, 159; (g) Dong, N.;
Zhang, Z. P.; Xue, X. S.; Li, X.; Cheng, J. P. Angew. Chem. Int. Ed. 2016,
55, 1460; (h) Wang, Y. F.; Chu, M.; Zhang, C.; Shao, J.; Qi, S.; Wang, B.;
Du, X. H.; Xu, D. Q. Adv. Synth. Catal., 2017, 359, 4170.
min (minor); H NMR (300 MHz, CDCl3) δ 7.91 (d, J = 2.2 Hz,
1H), 7.55 (dd, J = 8.7, 2.2 Hz, 1H), 7.47–7.33 (m, 5H), 7.14 (d, J
= 8.7 Hz, 1H), 6.00 (dd, J = 8.5, 6.5 Hz, 1H), 5.24 (s, 2H), 2.99–
2.83 (m, 1H), 2.47–2.34 (m, 1H), 2.26–2.14 (m, 1H), 2.07 (s, 3H),
1.93 (d, J = 8.8 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 169.7,
152.1, 140.2, 135.2, 132.7, 130.9, 128.7, 128.3, 126.9, 125.7 (q, J
= 277.6 Hz), 124.1, 115.4, 72.0, 71.3, 38.9 (q, J = 31.5 Hz), 36.8,
21.0; HRMS (ESI-TOF) Calcd. for C19H18F3NO5SNa [M+Na]+:
452.0750, found: 452.0745.
4.5 Procedure for the deacetylation of 3r. 3r (69.3 mg, 0.16
mmol) was dissolved in 2 mL of methanol/DCM (v/v=1/1) at
room temperature. To the solution was added 12M aqueous HCl
(0.5 mL). The reaction mixture was stirred at 50 oC for 24 h until
the disappearance of the starting material was detected by TLC.
After the solvent was evaporated the residue was dissolved in
dichloromethane and dried over Na2SO4. After concentration
under reduced pressure the crude product was purified by column
chromatography (petroleum ether/DCM=2/1~1/1, v/v) to afford
the desired product 6.
6
4.5.1
(R)-1-(4-(benzyloxy)-3-nitrophenyl)-4,4,4-trifluoro-3-
mercaptobutan-1-one (6). Off white solid; 54.6 mg; 88% yield;
92% ee; [α]D20 = +7.3 (c 2.73, CHCl3); m.p.= 138.6-139.4 °C; the
enantiomeric excess was determined by HPLC on Chiralpak IC
column: dichloromethane/n-hexane = 30/70; flow rate = 1.0
mL/min; UV detection at 254 nm; tR = 28.43 min (major), 25.62
7
1
min (minor); H NMR (300 MHz, Chloroform-d) δ 8.44 (d, J =
2.0 Hz, 1H), 8.12 (dd, J = 8.8, 2.0 Hz, 1H), 7.49–7.34 (m, 5H),
7.22 (d, J = 8.9 Hz, 1H), 4.16–3.98 (m, 1H), 3.42 (qd, J = 17.8,
6.3 Hz, 2H), 2.15 (d, J = 8.8 Hz, 1H); 13C NMR (75 MHz,
Chloroform-d) δ 191.3, 155.7, 139.8, 134.5, 133.7, 128.9, 128.6,
126.9, 126.0 (q, J = 277.3 Hz), 125.9, 114.9, 71.5, 40.6, 36.7 (q,
J = 31.7 Hz); HRMS (ESI-TOF) Calcd. for C17H14F3NO4SNa
[M+Na]+: 408.0493, found: 408.0484.
8
9
Hu, W.-F.; Zhao, J.-Q.; Chen, Y.-Z.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-
C. J. Org. Chem. 2018, 83, 5771.
For selected examples from our group, see: (a) Zhao, J.-Q.; Zhou, M.-Q.;
Wu, Z.-J.; Wang, Z.-H.; Yue, D.-F.; Xu, X.-Y.; Zhang, X.-M.; Yuan, W.-
C. Org. Lett. 2015, 17, 2238; (b) You, Y.; Cui, B.-D.; Zhou, M.-Q.; Zuo,
J.; Zhao, J.-Q.; Xu, X.-Y.; Zhang, X.-M.; Yuan, W.-C. J. Org. Chem.
2015, 80, 5951; (c) You, Y.; Wu, Z.-J.; Wang, Z.-H.; Xu, X.-Y.; Zhang,
X.-M.; Yuan, W.-C. J. Org. Chem. 2015, 80, 8470; (d) Wang, Z.-H.; Wu,
Z.-J.; Yue, D.-F.; Hu, W.-F.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C.
Chem. Commun., 2016, 52, 11708; (e) Zhao, J.-Q.; Yue, D.-F.; Zhang, X.-
M.; Xu, X.-Y.; Yuan, W.-C. Org. Biomol. Chem. 2016, 14, 10946; (f)
You, Y.; Lu, W.-Y.; Wang, Z.-H.; Chen, Y.-Z.; Xu, X.-Y.; Zhang, X.-M.;
Yuan, W.-C. Org. Lett. 2018, 20, 4453.
Acknowledgements
We are grateful for financial support from the National
Natural Science Foundation of China (No. 21572223, 21572224,
21602217, 21871252), Sichuan Youth Science and Technology
Foundation (2016JQ0024).
References and notes
1
(a) Nudelman, A.; Chemistry of Optically Active Sulfur Compounds;
Gordon and Breach: New York, 1984; (b) Damani, L. A. Sulphur-
Containing Drugs and Related Organic Compounds: Chemistry,
Biochemistry and Toxicology; Ellis Horwood: Chichester, 1989; (c)
Chatgilialoglu, C.; Asmus, K.-D. Sulfur-Centered Reactive Intermediates
in Chemistry and Biology; Springer: New York, 1990; (d) Clayden, J.;
MacLellan, P. Beilstein J. Org. Chem. 2011, 7, 582; (e) Moran, L. K.;
Gutteridge, J. M.; Quinlan, G. J. Curr. Med. Chem. 2001, 8, 763; (f)
Pachamuthu, K.; Schmidt, R. R. Chem. Rev. 2006, 106, 160.
10 For selected examples, see: (a) Blay, G.; Fernandez, I.; Muñoz, M. C.;
Pedro, J. R.; Vila, C. Chem. -Eur. J. 2010, 16, 9117; (b) Wang, W.; Lian,
X.; Chen, D.; Liu, X.; Lin, L.; Feng, X. Chem Commun. 2011, 47, 7821;
(c) Li, Q.-H.; Tong, M.-C.; Li, J.; Tao, H.-Y.; Wang, C.-J. Chem.
Commun. 2011, 47, 11110; (d) Kawai, H.; Kitayama, T.; Tokunaga, E.;
Matsumoto, T.; Sato, H.; Shiro, M.; Shibata, N. Chem. Commun. 2012, 48,
4067; (e) Kawai, H.; Yuan, Z.; Kitayama, T.; Tokunaga, E.; Shibata, N.
Angew. Chem. Int. Ed. 2013, 52, 5575; (f) Morigaki, A.; Tanaka, T.;
Miyabe, T.; Ishihara, T.; Konno, T. Org. Biomol. Chem. 2013, 11, 586; (g)
Kwiatkowski, P.; Cholewiak, A.; Kasztelan, A. Org. Lett. 2014, 16, 5930;
(h) Sanz-Marco, A.; Garcia-Ortiz, A.; Blay, G.; Pedro, J. R. Chem.
2
For selected reviews, see: (a) Kusumoto, T.; Hiyama, T. In
Enantiocontrolled
Synthesis
of
Fluoro-Organic
Compounds:
Stereochemical Challenges and Biomedicinal Targets; Soloshonok, V. A.,
Ed.; Wiley: Chichester, 1999; Chapter 12; (b) Shimizu M.; Hiyama, T.