ORGANIC
LETTERS
2013
Vol. 15, No. 13
3428–3431
Copper Catalyzed β‑Difluoroacetylation
of Dihydropyrans and Glycals by Means
of Direct CÀH Functionalization
Marie-Charlotte Belhomme, Thomas Poisson,* and Xavier Pannecoucke*
ꢀ
Normandie Universite, COBRA, UMR 6014 et FR 3038; Universite de Rouen;
INSA Rouen; CNRS, 1 rue Tesniere, 76821 Mont Saint-Aignan Cedex, France
ꢀ
ꢁ
thomas.poisson@insa-rouen.fr; xavier.pannecoucke@insa-rouen.fr
Received May 26, 2013
ABSTRACT
A copper catalyzed direct functionalization of dihydropyrans and glycals has been developed. This method affords a new and straightforward
access to C-2-CF2 dihydropyrans and glycosides in a single step starting from readily available starting materials. This new copper based catalytic
system, probably involving a Cu(III) species as supported by experiments, allows the formation of the valuable fluorinated glycosides in good
yields.
Molecules containing a fluorine atom represent a re-
markable class of compounds; the unique properties of the
fluorine atom push it to the forefront of agrochemicals and
drugs discovery. Its electronegativity, its small size, and the
high energy of the CÀF bond afford it the impressive
ability to change the physical and biological properties of
molecules.1,2 On the other hand, fluorine is well recognized
as a metabolically stable analog and/or surrogate of the
hydrogen atom.2 As a result, more than 20% of pharma-
ceuticals and 30% of agrochemicals bear at least one
fluorine atom.1 Thus, many synthetic efforts have been
recently devoted to achieving the introduction of fluorine
or fluorinated building blocks in an efficient manner3 and
particularly by means of CÀH bond functionalization.4
Quite recently, the introduction of fluorine and a CF3
moiety onto aromatic and aliphatic backbones has at-
tracted much attention, offering a wide range of elegant
and efficient processes.5 Surprisingly, the catalyzed direct
introduction of a functionalized fluorinated moiety has
been less explored, and such processes have remained
scarce despite the high level of functionalization of the
resulting products.6 Among these fluorinated moieties, the
CF2CO2Et moiety is extremely appealing due to the huge
possibility of postfunctionalization. However, the intro-
duction of the difluoroacetyl moiety onto an alkene or
aromaticmoietyusually focuses on (1) aradicaladdition of
€
(1) (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b)
O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308. (c) Purser, S.; Moore, P. R.;
Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (d) Jeschke,
P. ChemBioChem 2004, 5, 570.
€
(2) Bohm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.;
€
Muller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637.
(3) For review, see: (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature
2011, 473, 470. (b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011,
111, 4475. (c) Prakash, G. K. S.; Wang, F. Chim. Oggi 2012, 5, 30. For an
early report on the radical of the fluorinated moiety on alkenes, see: (d)
Chen, Q.-Y.; Yang, Z.-Y. J. Fluorine Chem. 1985, 28, 399. (e) Chen,
Q.-Y.; He, Y.-B.; Yang, Z.-Y. J. Fluorine Chem. 1986, 34, 255. (f) Chen,
Q.-Y.; Yang, Z.-Y.; Zhao, C.-X.; Qiu, Z.-M. J. Chem. Soc., Perkin
Trans. 1 1988, 563. (g) Chen, Q.-Y.; Yang, Z.-Y. J. Chem. Soc., Chem.
Commun. 1986, 498. For selected examples, see: (h) Zhu, J.; Zhang, W.;
Zhang, L.; Liu, J.; Zheng, J.; Hu, J. J. Org. Chem. 2010, 75, 5505. (i) Zhu,
J.; Wang, F.; Huang, W.; Zhao, Y.; Ye, W.; Hu, J. Synlett 2011, 899. (j)
Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13,
5560.
(4) Selected examples: (a) Nagib, D. A.; MacMillan, D. W. C. Nature
2011, 480, 224. (b) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter,
R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S.
J. Am. Chem. Soc. 2012, 134, 1494. (c) Mejıa, E.; Togni, A. ACS Catal.
2012, 2, 521.
(5) Selected examples: (a) Cho, E. J.; Senecal, T. D.; Kinzel, T.;
Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679. (b)
Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034. (c) Novak, P.;
Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2012, 134, 16167. (d)
Hu, M.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2012, 134, 15257. (e) Wang, X.;
Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 7520.
(6) Surapanich, N.; Kuhakarn, C.; Pohmakotr, M.; Reutrakul, V.
Eur. J. Org. Chem. 2012, 5943.
r
10.1021/ol401483j
Published on Web 06/21/2013
2013 American Chemical Society