C O M M U N I C A T I O N S
Scheme 3. Deuterium-Labeling Experimentsa
Acknowledgment. We thank the National Research Foundation,
Singapore (NRF-RF2009-05 to N.Y.) and Nanyang Technological
University for generous financial support.
Supporting Information Available: Details of experimental pro-
cedures and physical properties of new compounds. This material is
References
(1) For selected examples, see: (a) Kischel, J.; Jovel, I.; Mertins, K.; Zapf, A.;
Beller, M. Org. Lett. 2006, 8, 19–22. (b) Rueping, M.; Nachtsheim, B. J.;
Scheidt, T. Org. Lett. 2006, 8, 3717–3719. (c) Sun, H.-B.; Li, B.; Hua, R.;
Yin, Y. Eur. J. Org. Chem. 2006, 4231–4236. (d) Zhang, Z.; Wang, X.;
Widenhoefer, R. A. Chem. Commun. 2006, 3717–3719. (e) Chu, C.-M.;
Huang, W.-J.; Liu, J.-T.; Yao, C.-F. Tetrahedron Lett. 2007, 48, 6881–
6885. (f) Wang, M.-Z.; Wong, M.-K.; Che, C.-M. Chem.sEur. J. 2008,
14, 8353–8364. (g) Das, B.; Krishnaiah, M.; Laxminarayana, K.; Damodar,
K.; Kumar, D. N. Chem. Lett. 2009, 38, 42–43.
(2) For reviews, see: (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem.
ReV. 2010, 110, 624–655. (b) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013–
3039. (c) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077–
1101.
a Py ) 2-pyridyl; Ar ) 4-PhC6H4. Co-PCy3 catalysis: CoBr2 (10 mol
%), PCy3 (10 mol %), Me3SiCH2MgCl (80 mol %), 60 °C, 1 h; Co-IMes
catalysis: CoBr2 (10 mol %), IMes•HCl (10 mol %), tBuCH2MgBr (100
mol %), 60 °C, 30 min. Deuterium incorporation was determined by 1H
NMR analysis. N.D. ) Not determined due to overlapping peaks.
We consider that the present hydroarylation reactions proceed
via the following steps: (1) chelation-assisted oxidative addition
of the C-H bond to the cobalt center,5,8 (2) insertion of styrene
into the Co-H bond, and (3) reductive elimination of the resulting
aryl(1-phenylethyl)cobalt or aryl(2-phenylethyl)cobalt intermediate.
On the basis of the necessity of a larger amount of the Grignard
reagent than required for the reduction of CoII to Co0, we speculate
that organocobalt(0)ate species are involved as the reactive
species.5,6,9 The observation of H/D scrambling suggests that the
C-H bond cleavage and olefin insertion steps are reversible and
that the two insertion pathways are competing in both the Co-PCy3
and Co-IMes systems. Thus the reductive elimination would be
the rate- and regioselectivity-determining step. We speculate that
the thermodynamic preference for benzylcobalt species4d,10 gov-
erns the branched selectivity for the Co-PCy3 catalysis, while the
preference of the cobalt center to avoid steric repulsion gives rise
to the linear selectivity in the Co-IMes catalysis.11 Substituents
on the arene and styrene substrates should also affect the two
competing pathways (e.g., Table 2, entry 6).
In summary, we have developed cobalt-catalyzed, chelation-
assisted hydroarylation reactions of styrenes. The ligand-controlled
regioselectivity switch of the present level is very rare in hydroary-
lation reactions reported thus far.12 In light of the orthogonal scope
and selectivity of the Lewis acid and transition metal catalyzed
hydroarylation reactions,1-4 the branched selectivity with the
Co-PCy3 catalysis is particularly attractive. The use of the
inexpensive cobalt catalysts and the relatively mild reaction
conditions are also notable features of the reaction.13 Extension of
this chemistry to more diverse aromatic and olefinic substrates,
including asymmetric catalysis, could have a major impact on the
synthesis of substituted benzene derivatives.
(3) For selected examples, see: (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka,
Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 36, 529–531. (b)
Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani,
N.; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68, 62–83. (c) Matsumoto, T.;
Periana, R. A.; Taube, D. J.; Yoshida, H. J. Mol. Catal. A 2002, 180, 1–
18. (d) Jun, C.-H.; Moon, C. W.; Hong, J.-B.; Lim, S.-G.; Chung, K.-Y.;
Kim, Y.-H. Chem.sEur. J. 2002, 8, 485–492. (e) Tan, K. L.; Bergman,
R. G.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 13964–13965. (f)
Martinez, R.; Chevalier, R.; Darses, S.; Genet, J.-P. Angew. Chem., Int.
Ed. 2006, 45, 8232–8235. (g) Martinez, R.; Genet, J.-P.; Darses, S. Chem.
Commun. 2008, 3855–3857.
(4) (a) Uchimaru, Y. Chem. Commun. 1999, 1133. (b) Nakao, Y.; Kashihara,
N.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 16170–
16171. (c) Mukai, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009,
74, 6410. (d) Nakao, Y.; Kashihara, N.; Kanyiva, K. S.; Hiyama, T. Angew.
Chem., Int. Ed. 2010, 49, 4451–4454.
(5) Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2010, 132,
12249–12251.
(6) Ding, Z.-H.; Yoshikai, N. Org. Lett. 2010, 12, 4180–4183.
(7) For examples of unique reactivities of the IMes ligand in cobalt catalysis,
see: (a) Kobayashi, T.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. J. Am. Chem.
Soc. 2008, 130, 11276–11277. (b) Kobayashi, T.; Yorimitsu, H.; Oshima,
K. Chem.sAsian J. 2009, 4, 1078–1083.
(8) (a) Klein, H.-F.; Camadanli, S.; Beck, R.; Leudel, D.; Flo¨rke, U. Angew.
Chem., Int. Ed. 2005, 44, 975–977. (b) Lenges, C. P.; Brookhart, M.; Grant,
B. E. J. Organomet. Chem. 1997, 528, 199–203.
(9) (a) Ohmiya, H.; Wakabayashi, K.; Yorimitsu, H.; Oshima, K. Tetrahedron
2006, 62, 2207–2213. (b) Wakabayashi, K.; Yorimitsu, H.; Oshima, K.
J. Am. Chem. Soc. 2001, 123, 5374–5375. (c) Czaplik, W. M.; Mayer, M.;
Jacobi von Wangelin, A. Synlett 2009, 2931–2934.
(10) (a) Galamb, V.; Pa´lyi, G. J. Chem. Soc., Chem. Commun. 1982, 487. (b)
Galamb, V.; Pa´lyi, G.; Ungva´ry, F.; Marko´, L.; Boese, R.; Schmid, G.
J. Am. Chem. Soc. 1986, 108, 3344–3351.
(11) While we propose a regioselectivity switch in the same mechanistic manifold
involving two-electron oxidative addition/reductive elimination steps, a
possibility that the mechanism changes depending on the ligand (e.g., two-
electron vs single-electron mechanisms) cannot be excluded. For examples
single-electron transfer reactivity of cobalt complexes, see ref 9.
(12) Darses et al. reported a single example of regioselectivity switch for the
Ru-catalyzed reaction of an aromatic ketone (see ref 3g).
(13) (a) Kulkarni, A. A.; Daugulis, O. Synthesis 2009, 4087–4109. (b)
Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009,
48, 9792–9827.
JA108809U
9
402 J. AM. CHEM. SOC. VOL. 133, NO. 3, 2011