LETTER
Novel Phosphonated Benzoxazoles: Synthesis and Properties
821
(b) Bruyneel, F.; D’Auria, L.; Payen, O.; Courtoy, P. J.;
Marchand-Brynaert, J. ChemBioChem 2010, 11, 1451.
(11) The reagent was prepared from triethyl orthoacetate,
troduction of these molecules (2, 6) as ligands in MOFs
(Metal Organic Frameworks)15 is under investigation,
with a particular interest for iron(II) complexes with tri-
azole derivatives as co-ligands.16
bromine and pyridine according to: Mike, J. F.; Makowski,
A. J.; Jeffries-El, M. Org. Lett. 2008, 10, 4915.
(12) Stanovnik, B.; Svete, J. Chem. Rev. 2004, 104, 2433.
(13) Maggi, R.; Schlosser, M. J. Org. Chem. 1996, 61, 5430.
(14) 1H NMR, 13C NMR and 31P NMR spectra were recorded on
Bruker Avance 300 and 500 spectrometers. Spectra were
obtained in CDCl3 or CD3OD. Chemical shifts are reported
in ppm relative to the solvent signals. High Resolution Mass
Spectrometry (HRMS) analyses were performed on a LTQ-
orbitrap XL hybrid mass spectrometer (Thermo Fisher
Scientific, Bremen, Germany). Infrared spectra were
performed on a FTIR-84005 equipment using ATR mode.
Analytical grade solvents and commercially available
reagents were used without further purification.
Acknowledgment
This work was supported by the ARC program 08/13-009 (Commu-
nauté Française, Belgium) entitled ‘New hybrid inorganic-organic
materials with functional properties modulated through the supra-
molecular architecture’. J.M.-B. is senior research associate of the
F.R.S.-FNRS (Belgium).
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
Chromatography was carried with Rocc silica gel, 40–63 μm
or 60–200 μm.
References and Notes
Diethyl 2-Methylbenzoxazole-4-phosphonate (2): The
glassware was flame-dried under an argon atmosphere. To a
solution of 2-amino-3-hydroxybenzenephosphonic acid
(1.00 g, 5.29 mmol) in anhyd MeCN (10.00 mL) was added
triethyl orthoacetate (5.0 equiv, 4.90 mL). The mixture was
heated at 80 °C overnight and then evaporated to give an
orange oil. The crude product was purified by flash
chromatography on silica gel (cyclohexane–EtOAc, 1:1,
then EtOAc). The title compound was isolated as an orange
oil with 78% yield (1.11 g). IR (film): 1677, 1568, 1415,
1244, 1230, 1020, 973, 790, 761 cm–1. 1H NMR (300 MHz,
CD3OD): δ = 1.30–1.35 [m, 6 H, PO(OCH2CH3)2], 2.69 (s,
3 H, Me), 4.16–4.22 [m, 4 H, PO(OCH2CH3)2], 7.48 (td,
3JH–H = 7.9 Hz, 4JH–P = 3.7 Hz, 1 H, H-6), 7.74–7.85 (m, 2 H,
H-5, H-7). 13C NMR (75 MHz, CD3OD): δ = 14.2 (s, Me),
16.6 [d, 3JC–P = 6.3 Hz, PO(OCH2CH3)2], 64.1 [d, 2JC–P = 5.6
Hz, PO(OCH2CH3)2], 116.2 (d, 4JC–P = 3.1 Hz, C-7), 119.6
(d, 1JC–P = 190.2 Hz, C-4), 125.6 (d, 3JC–P = 14.9 Hz, C-6),
130.1 (d, 2JC–P = 7.8 Hz, C-5), 143.7 (d, 2JC–P = 6.8 Hz, C-9),
152.4 (d, 3JC–P = 15.9 Hz, C-8), 167.6 (s, C-2). 31P NMR (121
MHz, CD3OD): δ = 16.6 [s, PO(OEt)2]. HRMS (ESI): m/z
[M + Na]+ calcd for C12H16NO4NaP: 292.0715; found:
292.0716.
(1) (a) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T.
Org. Biomol. Chem. 2006, 4, 2337. (b) Samota, K. M.; Seth,
G. Heteroat. Chem. 2010, 21, 44. (c) Jiang, J.; Tang, X.;
Dou, W.; Zhang, H.; Liu, W.; Wang, C.; Zheng, J. J. Inorg.
Biochem. 2010, 104, 583. (d) Tipparaju, S.; Joyasamal, S.;
Pieroni, M.; Kaiser, M.; Brun, R.; Kozikowski, A. P. J. Med.
Chem. 2008, 51, 7344.
(2) (a) Haneda, S.; Gan, Z.; Eda, K.; Hayashi, M.
Organometallics 2007, 26, 6551. (b) Zang, M.; Gao, R.;
Hao, X.; Sun, W.-H. J. Organomet. Chem. 2008, 693, 3867.
(c) He, X.-F.; Vogels, C. M.; Decken, A.; Westcott, S. A.
Polyhedron 2004, 23, 155. (d) Kumar, D.; Jacob, M. R.;
Reynolds, M. B.; Kerwin, S. M. Bioorg. Med. Chem. 2002,
10, 3997.
(3) (a) Oehlers, L.; Mazzitelli, C. L.; Brodbelt, J. S.; Rodriguez,
M.; Kerwin, S. J. Am. Soc. Mass Spectrom. 2004, 15, 1593.
(b) McKee, M. L.; Kerwin, S. M. Bioorg. Med. Chem. 2008,
16, 1775.
(4) Vogels, C. M.; Wellwood, H. L.; Biradha, K.; Zaworotko,
M. J.; Westcott, S. A. Can. J. Chem. 1999, 77, 1196.
(5) (a) Tong, Y.-P.; Lin, Y. W. Inorg. Chim. Acta 2009, 362,
2033. (b) Tong, Y.-P.; Zheng, S.-L.; Chen, X.-M. Inorg.
Chem. 2005, 44, 4270. (c) Kim, W. S.; You, J. M.; Lee, B.-
J.; Jang, Y.-K.; Kim, D.-E.; Kwon, Y.-S. Thin Solid Films
2007, 515, 5070.
(6) (a) Tian, Y.; Chen, C.-Y.; Yang, C.-C.; Young, A. C.; Jang,
S.-H.; Chen, W.-C.; Jen, A. K.-Y. Chem Mater. 2008, 20,
1977. (b) Milewska, M.; Guzow, K.; Wiczk, W. Cent. Eur.
J. Chem. 2010, 8, 674. (c) Oliveira, E.; Costa, S. P. G.;
Raposo, M. M. M.; Faza, O. N.; Lodeiro, C. Inorg. Chim.
Acta 2011, 366, 154.
(7) (a) Bruyneel, F.; Payen, O.; Rescigno, A.; Tinant, B.;
Marchand-Brynaert, J. Chem. Eur. J. 2009, 15, 8283.
(b) Bruyneel, F.; Marchand-Brynaert, J. Synlett 2010, 1974.
(8) (a) Villemin, E.; Herent, M.-F.; Marchand-Brynaert, J. Eur.
J. Org. Chem. 2012, 6165; and references cited therein.
(b) Lagadic, E.; Garcia, Y.; Marchand-Brynaert, J. Synthesis
2012, 44, 93; and references cited therein . (c) Villemin, E.;
Elias, B.; Robiette, R.; Herent, M.-F.; Habib-Jiwan, J.-L.;
Marchand-Brynaert, J. Tetrahedron Lett. 2011, 52, 5140.
(9) (a) Sigel, H.; Kapinos, L. E. Coordin. Chem. Rev. 2000, 200-
202, 563. (b) Galezowska, J.; Janicki, R.; Kozlowski, H.;
Mondry, A.; Mlynarz, P.; Szyrwiel, L. Eur. J. Inorg. Chem.
2010, 1696.
Diethyl 2-(N,N-Dimethyl-1-ethylen-1-amino)benzox-
azole-4-phosphonate (3): The glassware was flame-dried
under an argon atmosphere. To a solution of 2 (0.1 g, 0.4
mmol) in anhyd MeCN (2.0 mL) was added
dimethylformamide diethylacetal (DMFDEA; 3.0 equiv, 0.2
mL). The mixture was heated at reflux overnight and then
evaporated to give an orange oil. The crude product was
purified by flash chromatography on silica gel (EtOAc, then
EtOAc–i-PrOH, 95:5) to give the title compound as a yellow
oil with 80% yield (0.09 g). IR (film): 1633, 1547, 1537,
1414, 1387, 1240, 1227, 1107, 1047, 1024, 968, 787, 764
cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.31–1.37 [m, 6 H,
PO(OCH2CH3)2], 2.98 (s, 6 H, Me), 4.12–4.27 [m, 4 H,
PO(OCH2CH3)2], 5.19 (d, 3JH–H = 13.3 Hz, 1 H, C=CH), 7.15
(td, 3JH–H = 7.8 Hz, 4JH–P = 3.6 Hz, 1 H, H-6), 7.47 (ddd,
3JH–H = 7.9 Hz, 4JH–H = 5JH–P = 1.2 Hz, 1 H, H-7), 7.58 (d,
3JH–H = 13.3 Hz, 1 H, CH=C), 7.70 (ddd, 3JH–P = 13.8 Hz,
3JH–H = 7.7 Hz, 4JH–H = 1.1 Hz, 1 H, H-5). 13C NMR (125
MHz, CDCl3): δ = 16.4 [d, 3JC–P = 6.5 Hz, PO(OCH2CH3)2],
62.3 [d, 2JC–P = 5.1 Hz, PO(OCH2CH3)2], 81.7 (s, C=C),
112.8 (d, 4JC–P = 2.7 Hz, C-7), 116.2 (d, 1JC–P = 186.9 Hz,
C-4), 121.4 (d, 3JC–P = 15.0 Hz, C-6), 128.6 (d, 2JC–P = 8.4
Hz, C-5), 145.3 (d, 2JC–P = 6.8 Hz, C-9), 149.3 (s, C=C),
149.9 (d, 3JC–P = 16.0 Hz, C-8), 167.8 (s, C-2). 31P NMR (121
MHz, CDCl3): δ = 17.4 [s, PO(OEt)2]. HRMS (ESI): m/z [M
(10) (a) Bruyneel, F.; Enaud, E.; Billottet, L.; Vanhulle, S.;
Marchand-Brynaert, J. Eur. J. Org. Chem. 2008, 72.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 817–822