872
B. Venkat Ramulu et al.
LETTER
Part 1 Vol. III; 1. (b) Olah, G. A.; Klumpp, D. A.
Superelectrophiles and Their Chemistry; Wiley: New York,
2008.
(11) Ito, T.; Tanaka, T.; Iinuma, M.; Nakaya, K.-i.; Takahashi,
Y.; Sawa, R.; Murata, J.; Darnaedi, D. J. Nat. Prod. 2004,
67, 932.
(4) (a) Sai, K. K. S.; Tokarz, M. J.; Malunchuk, A. P.; Zheng,
C.; Gilbert, T. M.; Klumpp, D. A. J. Am. Chem. Soc. 2008,
130, 14388. (b) Zhang, Y.; Sheets, M. R.; Raja, E. K.;
Boblak, K. N.; Klumpp, D. A. J. Am. Chem. Soc. 2011, 133,
8467. (c) Evans, D. A.; Fandrick, K. R. Org. Lett. 2006, 8,
2249. (d) Rose, M. D.; Cassidy, M. P.; Rashatasakhon, P.;
Padwa, A. J. Org. Chem. 2007, 72, 538. (e) Wu, Y.-C.; Liu,
L.; Liu, Y.-L.; Wang, D.; Chen, Y.-J. J. Org. Chem. 2007,
72, 9383.
(12) Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K.
J. Med. Chem. 1995, 38, 4821.
(13) (a) Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. J. Am.
Chem. Soc. 1984, 106, 446. (b) deSolms, S. J.; Woltersdorf,
O. W. Jr.; Cragoe, E. J. Jr. J. Med. Chem. 1978, 21, 437.
(14) (a) Banerjee, M.; Mukhopadhyay, R.; Achari, B.; Banerjee,
A. K. J. Org. Chem. 2006, 71, 2787. (b) Lomberget, T.;
Bentz, E.; Bouyssi, D.; Balme, G. Org. Lett. 2003, 5, 2055.
(c) Banerjee, M.; Makhopadhyay, R.; Achari, B.; Banerjee,
A. K. Org. Lett. 2003, 5, 3931. For isolation, see: (d) Lin,
W.-H.; Fang, J.-M.; Cheng, Y.-S. Phytochemistry 1995, 40,
871.
(5) (a) Suzuki, T.; Ohwada, T.; Shudo, K. J. Am. Chem. Soc.
1997, 119, 6774. (b) Ohwada, T.; Suzuki, T.; Shudo, K.
J. Am. Chem. Soc. 1998, 120, 4629. (c) Kurouchi, H.;
Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc.
2010, 132, 807. (d) Colquhoun, H. M.; Lewis, D. F.;
Williams, D. J. Org. Lett. 2001, 3, 2337. (e) Fillion, E.;
Fishlock, D. Org. Lett. 2003, 5, 4653. (f) Wang, Q.; Padwa,
A. Org. Lett. 2006, 8, 601. (g) Chassaing, S.; Kumarraja, M.;
Pale, P.; Sommer, J. Org. Lett. 2007, 9, 3889. (h) Saito, A.;
Umakoshi, M.; Yagyu, N.; Hanzawa, Y. Org. Lett. 2008, 10,
1783. (i) Tang, S.; Xu, Y.; He, J.; He, Y.; Zheng, J.; Pan, X.;
She, X. Org. Lett. 2008, 10, 1855. (j) Kangani, C. O.; Day,
B. W. Org. Lett. 2008, 10, 2645. (k) Kim, K.; Kim, I. Org.
Lett. 2010, 12, 5314. (l) Chinnagolla, R. K.; Jeganmohan, M.
Org. Lett. 2012, 14, 5246. (m) Eom, D.; Park, S.; Park, Y.;
Ryu, T.; Lee, P. H. Org. Lett. 2012, 14, 5392. (n) Klumpp,
D. A.; Baek, D. N.; Prakash, G. K. S.; Olah, G. A. J. Org.
Chem. 1997, 62, 6666. (o) Rendy, R.; Zhang, Y.; McElrea,
A.; Gomez, A.; Klumpp, D. A. J. Org. Chem. 2004, 69,
2340. (p) Bhar, S. S.; Ramana, M. M. V. J. Org. Chem.
2004, 69, 8935. (q) Womack, G. B.; Angeles, J. G.; Fanelli,
V. E.; Heyer, C. A. J. Org. Chem. 2007, 72, 7046. (r) Sai, K.
K. S.; Esteves, P. M.; Penha, E. T. D.; Klumpp, D. A. J. Org.
Chem. 2008, 73, 6506. (s) Prakash, G. K. S.; Paknia, F.;
Vaghoo, H.; Rasul, G.; Mathew, T.; Olah, G. A. J. Org.
Chem. 2010, 75, 2219. (t) Raja, E. K.; DeSchepper, D. J.;
Lill, S. O. N.; Klumpp, D. A. J. Org. Chem. 2012, 77, 5788.
(u) Choi, Y. L.; Kim, B. T. Heo J.-N. J. Org. Chem. 2012,
77, 8762. (v) Mahoney, S. J.; Moon, D. T.; Hollinger, J.;
Fillion, E. Tetrahedron Lett. 2009, 50, 4706. (w) Aikawa,
H.; Tago, S.; Umetsu, K.; Haginiwa, N.; Asao, N.
Tetrahedron 2009, 65, 1774.
(15) General Procedure for Friedel–Crafts Alkylation and
Acylation of Ethyl Cinnamates (GP-1)
To an oven-dried Schlenk tube under nitrogen atmosphere
were added ester 1 (100 mg, 0.42–0.57 mmol), arene 2 (in
case of benzene, toluene, and xylene 12 equiv and for other
electron-rich arenes 1.5 equiv were used for 1 equiv of ester
1) and DCE (2 mL), followed by the addition of TfOH [3
equiv (i.e., 1.26–1.71 mmol)]. The resultant reaction mixture
was stirred at 80 °C for 12–24 h. Progress of the reaction
was monitored by TLC until the reaction was completed.
The reaction mixture was quenched by the addition of aq
NaHCO3 and extracted with CH2Cl2 (3 × 20 mL). The
combined organic layers were washed with sat. NaCl
solution, dried (Na2SO4), and concentrated under reduced
pressure. Purification of the residue by silica gel column
chromatography (PE–EtOAc) furnished the indanone 3 (54–
92%).
Representative Analytical Data
Compound 3f: IR (MIR-ATR, 4000–600 cm–1): 2966, 2930,
1710, 1602, 1491, 1462, 1288, 1234, 1151, 1093, 1012, 828,
762, 674, 582 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.78
(d, 1 H, J = 7.3 Hz, ArH), 7.60 (dd, 1 H, J = 7.8, 7.3 Hz,
ArH), 7.43 (dd, 1 H, J = 7.8, 7.3 Hz, ArH), 7.25 (d, 1 H, J =
7.8 Hz, ArH), 7.24 (ddd, 2 H, J=8.8, 2.4, 2.4 Hz, ArH), 7.10
(ddd, 2 H, J = 8.8, 2.4, 2.4 Hz, ArH), 2.91 (d, 1 H, J = 19.1
Hz, CHaHbCO), 2.88 (d, 1 H, J = 19.1 Hz, CHaHbCO), 1.81
[s, 3 H, ArC(CH2CO)CH3] ppm. 13C NMR (100 MHz,
CDCl3): δ = 205.3 (s, C=O), 162.3 (s, ArC), 145.8 (s, ArC),
135.6 (s, ArC), 135.4 (d, ArCH), 132.3 (s, ArC), 128.5 (d, 2
C, ArCH), 128.0 (d, ArCH), 127.7 (d, 2 C, ArCH), 125.4 (d,
ArCH), 123.4 (d, ArCH), 55.5 (t, CH2CO), 45.6 [s,
ArC(CH2CO)CH3], 28.3 [q, ArC(CH2CO)CH3] ppm. HRMS
(APCI+): m/z calcd for [C16H14ClO]+: 257.0728 [M + H]+;
found: 257.0724.
(6) Olah, G. A.; Germain, A.; Lin, H. C.; Forsyth, D. A. J. Am.
Chem. Soc. 1975, 97, 2928.
(7) (a) Chang, Y. H.; Ford, W. T. J. Org. Chem. 1981, 46, 3758.
(b) Nishimoto, Y.; Babu, S. A.; Yasuda, M.; Baba, A. J. Org.
Chem. 2008, 73, 9465. (c) Wrona-Piotrowicz, A.; Cegliński,
D.; Zakrzewski, J. Tetrahedron Lett. 2011, 52, 5270.
(d) Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M. J. Org.
Chem. 2005, 70, 1316.
Compound 3g: IR (MIR-ATR, 4000–600 cm–1): 2964, 2851,
1705, 1581, 1488, 1399, 1282, 1244, 1160, 1093, 826, 724,
665, 588 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.57 (s, 1
H, ArH), 7.42 (d, 1 H, J = 7.8 Hz, ArH), 7.22 (ddd, 2 H, J =
8.8, 2.4, 2.4 Hz, ArH), 7.14 (d, 1 H, J = 7.8 Hz, ArH), 7.10
(ddd, 2 H, J = 8.8, 2.4, 2.4 Hz, ArH), 2.89 (d, 1 H, J = 19.1
Hz, CHaHbCO), 2.87 (d, 1 H, J = 19.1 Hz, CHaHbCO), 2.42
(8) Hwang, J. P.; Prakash, G. K. S.; Olah, G. A. Tetrahedron
2000, 56, 7199.
(9) (a) Hammett, L. P. Chem. Rev. 1935, 17, 125. (b) Hammett,
L. P. J. Am. Chem. Soc. 1937, 59, 96. (c) King, J. F.; Rathore,
R.; Guo, Z.; Li, M.; Payne, N. C. J. Am. Chem. Soc. 2000,
122, 10308. (d) Bruckner, R. Organic Mechanisms:
Reactions, Stereochemistry and Synthesis; Harmata, M.,
Ed.; Springer: Berlin, 2010.
(10) (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H. Angew. Chem.
Int. Ed. 2000, 39, 2285; Angew. Chem. 2000, 112, 2382.
(b) Gerald Dyker, G.; Muth, E.; Hashmi, A. S. K.; Ding, L.
Adv. Synth. Catal. 2003, 345, 1247. (c) Hashmi, A. S. K.;
Schwarz, L.; Rubenbauer, P.; Blanco, M. C. Adv. Synth.
Catal. 2006, 348, 705.
(s, 3 H, ArCH3), 1.78 [s, 3 H, ArC(CH2CO)CH3] ppm. 13
NMR (100 MHz, CDCl3): δ = 205.4 (s, C=O), 159.7 (s,
C
ArC), 146.1 (s, ArC), 138.0 (s, ArC), 136.6 (d, ArCH), 135.9
(s, ArC), 132.2 (s, ArC), 128.5 (d, 2 C, ArCH), 127.6 (d, 2
C, ArCH), 125.1 (d, ArCH), 123.3 (d, ArCH), 55.8 (t,
CH2CO), 45.3 [s, ArC(CH2CO)CH3], 28.3 [q,
ArC(CH2CO)CH3], 21.1 (q, ArCH3) ppm. HRMS (APCI+):
m/z calcd for [C17H16ClO]+: 271.0884 [M + H]+; found:
271.0880.
Synlett 2013, 24, 868–872
© Georg Thieme Verlag Stuttgart · New York