ChemComm
Communication
rcalcd = 1.617 g mLÀ1, m(Cu-Ka) = 10.49 mmÀ1, ymax = 57.71, T =
100(2) K, 17 762 reflections collected, R1 = 0.0218 for 2709 reflections,
Rint = 0.039, (304 parameters) with I > 2s(I), and R1 = 0.0242, wR2À
=
:
0.0648, GooF = 1.09 for all 3067 data, CCDC #930587. Et3NH+Á9UO2
C72H51O11U, 1.5(C5H10), 2.5(CH2Cl2), C6H16N, M = 1749.86, Monoclinic,
P21/n, a = 19.6677(9) Å, b = 18.8428(9) Å, c = 22.6324(10) Å, a = 90.001, b =
109.593(2)1, g = 90.001, V = 7901.8(6) Å3, Z = 4, rcalcd = 1.471 g mLÀ1
,
m(Mo-Ka) = 2.286 mmÀ1, ymax = 25.2421, T = 100(2) K, 64 835 reflections
collected, R1 = 0.0472 for 10 896 reflections, Rint = 0.0846, (949 para-
meters) with I > 2s(I), and R1 = 0.0915, wR2 = 0.1028, GooF = 1.010 for all
16 177 data, CCDC #930588. Et3NH+Á10UO2À: C72H57O8U, C6H16N,
4(CH4O), M = 1518.57, Monoclinic, P21/n, a = 14.2622(12) Å, b =
18.6958(15) Å, c = 26.384(2) Å, a = 90.001, b = 93.484(3)1, g = 90.001,
V = 7022.2(10) Å3, Z = 4, rcalcd = 1.436 g mLÀ1, m(Cu-Ka) = 7.02 mmÀ1
,
ymax = 68.001, T = 100(2) K, 56 112 reflections collected, R1 = 0.0228 for
11 660 reflections, Rint = 0.030 (900 parameters) with I > 2s(I), and R1 =
0.0246, wR2 = 0.0568, GooF = 1.062 for all 12 372 data, CCDC #940964.
Fig. 3 X-ray crystal structures of the UO2(9) and UO2(10) complexes. The
1 B. Benedict, T. H. Pigford and H. Levi, Nuclear Chemical Engineering,
McGraw-Hill, New York, 1981.
triethylammonium counter cations are omitted for clarity.
2 (a) T. S. Franczyk, K. R. Czerwinski and K. N. Raymond, J. Am. Chem.
Soc., 1992, 114, 8138–8146; (b) S. C. Bart and K. Meyer, Struct.
´
Bonding, 2008, 127, 119–176; (c) J.-C. Berthet, P. Thuery,
J.-P. Dognon, D. Guillaneux and M. Ephritikhine, Inorg. Chem.,
2008, 47, 6850–6862; (d) P. A. Giesting and P. C. Burns, Crystallogr.
Rev., 2006, 12, 205–255.
3 (a) G. E. Sigmon, J. Ling, D. K. Unruh, L. Moore-Shay, M. Ward,
B. Weaver and P. C. Burns, J. Am. Chem. Soc., 2009, 131, 16648–16649;
´
´
(b) S. Pasquale, S. Sattin, E. C. Escudero-Adan, M. Martınez-Belmonte
and J. de Mendoza, Nat. Commun., 2012, 3, 785; (c) P. Thuery and
B. Masci, Supramol. Chem., 2003, 15, 95–99.
4 (a) P. L. Arnold, D. Patel, C. Wilson and J. B. Love, Nature, 2008, 451,
315–317; (b) P. L. Arnold, E. Hollis, G. S. Nichol, J. B. Love,
J.-C. Griveau, R. Caciuffo, N. Magnani, L. Maron, L. Castro,
A. Yahia, S. O. Odoh and G. Schreckenbach, J. Am. Chem. Soc.,
2013, 135, 3841–3845.
5 (a) P. G. Allen, J. J. Bucher, D. L. Clark, N. M. Edelstein, S. A. Ekberg,
J. W. Gohdes, E. A. Hudson, N. Kaltsoyannis, W. W. Lukens,
M. P. Neu, P. D. Palmer, T. Reich, D. K. Shuh, C. D. Tait and
B. D. Zwick, Inorg. Chem., 1995, 34, 4797–4807; (b) R. Graziani,
G. Bombieri and E. Forsellini, J. Chem. Soc., Dalton Trans., 1972,
2059–2061.
6 A. C. Sather, O. B. Berryman and J. Rebek Jr., J. Am. Chem. Soc., 2010,
132, 13572–13574.
7 S. Beer, O. B. Berryman, D. Ajami and J. Rebek Jr., Chem. Sci., 2010,
1, 43–47.
8 (a) A. R. Fersht, Enzyme Structure and Mechanism, WH Freeman, New
York, 2nd edn, 1985, ch. 11, pp. 293–308; (b) J. R. Moran, S. Karbach
and D. J. Cram, J. Am. Chem. Soc., 1982, 104, 5826–5828.
9 A search of the CSD (Cambridge Structural Database, Version 5.34,
November 2012+2 updates) for the uranyl ion reveals 2015 unique
structures. Of these structures, 360 contain a carboxylate binding
the uranyl ion in some way. There are only 2 structures containing a
2,6-terphenyl carboxylate and only 1 structure where three carbox-
ylates in a single molecule bind the uranium atom in a chelate.
10 J. A. Turner and W. S. Jacks, J. Org. Chem., 1989, 54, 4229–4231.
11 (a) E. A. Meyer, R. K. Castellano and F. Diederich, Angew. Chem., Int. Ed.,
2003, 42, 1210–1250; (b) L. M. Salonen, M. Ellermann and F. Diederich,
Angew. Chem., Int. Ed., 2011, 50, 4808–4842; (c) C. Bissantz, B. Kuhn and
M. Stahl, J. Med. Chem., 2010, 53, 5061–5084.
12 Disorder of one of the ligands (4) and the inclusion of diordered
solvent prevents a meaningful evaluation of the structural metrics.
13 (a) G. Hennrich and E. V. Anslyn, Chem.–Eur. J., 2002, 8, 2218–2224;
(b) E. Zysman-Colman and C. Denis, Coord. Chem. Rev., 2012, 256,
1742–1761; (c) S. C. Bart, F. W. Heinemann, C. Anthon, C. Hauser
and K. Meyer, Inorg. Chem., 2009, 48, 9419–9426; (d) T. D. P. Stack
and R. H. Holm, J. Am. Chem. Soc., 1987, 109, 2546–2547;
(e) D. D. MacNicol, A. D. U. Hardy and D. R. Wilson, Nature, 1977,
266, 611–612.
Scheme 2 (a) PCC, DCM, 2 h, r.t.; (b) CHCl3, Et3SiH, BF3ÁEt2O, 0 1C, 45 min; (c)
AcOH, 48% HBr in H2O, 130 1C.
donor in close proximity to the uranyl oxygen atom, which could
improve affinity.
In summary, we have synthesized and structurally characterized
the uranyl complexes of rigid aromatic carboxylate ligands 4, 9, and
10. With the pyrazole core, the adjacent phenyl groups are open wide,
allowing solvent molecules to interact freely with the interior of
the complex. The terphenyl-based ligands 9 and 10 more-or-less
encapsulate the uranyl ion with aromatic panels. Their poor solubility
and the unfavourable solution geometry of 9 will be addressed in our
future pursuit of the encapsulation of the uranyl ion.
14 E. Reisner and S. J. Lippard, Eur. J. Org. Chem., 2008, 156–163.
´
15 A. Ana Arda, C. Venturi, C. Nativi, O. Francesconi, G. Gabrielli,
Notes and references
˜
´
F. J. Canada, J. Jimenez-Barbero and S. Roelens, Chem.–Eur. J., 2010,
16, 414–418.
16 For instance, 9 and 10 are able to extract B20% of the uranyl ion
‡ Crystal data: (pyr)242UO2: C42H32N6O6U, 2(C5H5N), M = 1112.96,
Monoclinic, P21/c, a = 16.8356(11) Å, b = 9.0754(6) Å, c = 14.9921(10) Å,
a = 90.001, b = 93.824(2)1, g = 90.001, V = 2285.5(3) Å3, Z = 2,
from a 400 ppm aqueous solution into the organic phase (see ESI†).
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 6379--6381 6381