Job/Unit: O30300
/KAP1
Date: 26-04-13 12:58:10
Pages: 13
F. Diederich et al.
FULL PAPER
134.96, 151.87, 153.83, 154.43, 155.87, 163.66, 166.11 (21 signals
observed out of 22 expected) ppm. HR-MALDI-MS (3-HPA;
pos.): m/z (%) = 1056.3540 (100) [M]+ (calcd. for C54H45N12195Pt+:
11056.3536).
Acknowledgments
This work was supported by the European Commission (ERC Ad-
vanced Grant, number 246637, OPTELOMAC). B. H. T. is recipi-
ent of a doctoral fellowship from the Stipendienfonds der Schwei-
zerischen Chemischen Industrie (SSCI) and M. C. is recipient of
an ETH Research Fellowship. The authors thank Michael Solar
and Paul Seiler, ETH Zürich, for X-ray crystallographic work, and
Prof. Dr. Paul Pregosin and Dr. Aaron Finke for helpful dis-
cussions.
cis-Bis{5,5-dicyano-3-(dicyanomethylene)-4-[4-(dimethylamino)phen-
yl]pent-4-en-1-ynyl}[1,2-bis(dicyclohexylphosphanyl)ethane]plati-
num(II) (27): Pt complex 20 (20.0 mg, 0.021 mmol) and TCNE
(5.4 mg, 0.042 mmol) were dissolved in CH2Cl2 (0.5 mL) and the
mixture was stirred at 25 °C for 12 h. The solvent was evaporated
and the crude product subjected to CC (SiO2; 1 % EtOAc in
CH2Cl2) to afford 27 (17.9 mg, 85%) as a dark-green metallic solid.
Rf = 0.45 (SiO2; 3% EtOAc in CH2Cl2); m.p. 145–150 °C (dec.).
1H NMR (400 MHz, CD2Cl2): δ = 0.97–1.55 (m, 18 H), 1.57–2.48
(m, 30 H), 3.19 (s, 12 H), 6.79 (d, J = 9.4 Hz, 4 H), 7.91 (d, J =
9.3 Hz, 4 H) ppm. 13C NMR (101 MHz, CD2Cl2): δ = 25.75, 26.5
(m), 28.49, 29.21, 34.74 [d, 1J(P-C) = 31.7 Hz], 40.00, 71.99, 88.64,
111.26, 111.94, 112.05, 112.74, 114.08, 114.83, 117.02, 129.02,
132.43, 153.20, 154.48, 163.19 ppm. 31P NMR (121 MHz, CD2Cl2):
δ = 64.55 (s), 64.55 [d, 1J(P-Pt) = 2242.3 Hz] ppm. HR-MALDI-
MS (3-HPA; pos.): m/z (%) = 1211.499 (100) [M]+ (calcd. for
C62H68N10P2 195Pt+: 1211.479).
[1] a) M. Kivala, F. Diederich, Acc. Chem. Res. 2009, 42, 235–248;
a) S.-i. Kato, F. Diederich, Chem. Commun. 2010, 46, 1994–
2006.
[2] For the organometallic activation of alkynes, see: a) M. I.
Bruce, B. C. Hall, B. D. Kelly, P. J. Low, B. W. Skelton, A. H.
White, J. Chem. Soc., Dalton Trans. 1999, 3719–3728; b) M. I.
Bruce, M. Jevric, C. R. Parker, W. Patalinghug, B. W. Skelton,
A. H. White, N. N. Zaitseva, J. Organomet. Chem. 2008, 693,
2915–2920; c) M. I. Bruce, Aust. J. Chem. 2011, 64, 77–103; d)
M. I. Bruce, A. Burgun, G. Grelaud, C. Lapinte, B. W. Skelton,
N. N. Zaitseva, Aust. J. Chem. 2012, 65, 763–772; e) M. I.
Bruce, S. Büschel, M. L. Cole, N. Scoleri, B. W. Skelton, A. H.
White, N. N. Zaitseva, Inorg. Chim. Acta 2012, 382, 6–12; f)
M. I. Bruce, A. Burgun, G. Grelaud, M. Jevric, B. K. Nichol-
son, B. W. Skelton, A. H. White, N. N. Zaitseva, Z. Anorg. Allg.
Chem. 2011, 637, 1334–1340.
[3] For recent applications of the CA-RE reaction by others, see:
a) A. Leliège, P. Blanchard, T. Rousseau, J. Roncali, Org. Lett.
2011, 13, 3098–3101; b) M. Morimoto, K. Murata, T. Michi-
nobu, Chem. Commun. 2011, 47, 9819–9821; c) S. Niu, G. Ul-
rich, P. Retailleau, R. Ziessel, Org. Lett. 2011, 13, 4996–4999;
d) Y. Washino, T. Michinobu, Macromol. Rapid Commun.
2011, 32, 644–648; e) T. Shoji, J. Higashi, S. Ito, T. Okujima,
M. Yasunami, N. Morita, Org. Biomol. Chem. 2012, 10, 2431–
2438; f) R. Garcia, M. A. Herranz, M. R. Torres, P.-A. Bouit,
J. L. Delgado, J. Calbo, P. M. Viruela, E. Orti, N. Martin, J.
Org. Chem. 2012, 77, 10707–10717; g) S. Chen, Y. Li, C. Liu,
W. Yang, Y. Li, Eur. J. Org. Chem. 2011, 6445–6451; h) W.
Zhou, J. Xu, H. Zheng, X. Yin, Z. Zuo, H. Liu, Y. Li, Adv.
Funct. Mater. 2009, 19, 141–149.
[4] For earlier work, see: a) X. Wu, J. Wu, Y. Liu, A. K.-Y. Jen, J.
Am. Chem. Soc. 1999, 121, 472–473; b) C. Cai, I. Liakatas, M.-
S. Wong, M. Bösch, C. Bosshard, P. Günter, S. Concilio, N.
Tirelli, U. W. Suter, Org. Lett. 1999, 1, 1847–1849; c) H. Ma,
B. Chen, T. Sassa, L. R. Dalton, A. K.-Y. Jen, J. Am. Chem.
Soc. 2001, 123, 986–987; d) A. Galvan-Gonzalez, G. I. Stege-
man, A. K.-Y. Jen, X. Wu, M. Canva, A. C. Kowalczyk, X. Q.
Zhang, H. S. Lackritz, S. Marder, S. Thayumanavan, G. Lev-
ina, J. Opt. Soc. Am. B 2001, 18, 1846–1853; e) J. Luo, H. Ma,
M. Haller, A. K.-Y. Jen, R. R. Barto, Chem. Commun. 2002,
888–889; f) Y. V. Pereverzev, O. V. Prezhdo, L. R. Dalton,
Chem. Phys. Lett. 2003, 373, 207–212; g) V. Mamane, I. Le-
doux-Rak, S. Deveau, J. Zyss, O. Riant, Synthesis 2003, 455–
467; h) Y. Morioka, N. Yoshizawa, J.-i. Nishida, Y. Yamashita,
Chem. Lett. 2004, 33, 1190–1191.
[5] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001,
113, 2056–2075; Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
[6] a) T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gissel-
brecht, P. Seiler, M. Gross, I. Biaggio, F. Diederich, Chem.
Commun. 2005, 737–739; b) T. Michinobu, C. Boudon, J.-P.
Gisselbrecht, P. Seiler, B. Frank, N. N. P. Moonen, M. Gross,
F. Diederich, Chem. Eur. J. 2006, 12, 1889–1905.
cis-Bis(4,4-dicyano-3-{[4-(dicyanomethylene)cyclohexa-2,5-dien-1-
ylidene][4-(dimethylamino)phenyl]methyl}but-3-en-1-ynyl)(4,4Ј-di-
tert-butyl-2,2Ј-bipyridine)platinum(II) (29): Pt complex 19 (50.0 mg,
0.072.5 mmol) and TCNQ (30.0 mg, 0.145 mmol) were dissolved in
CH2Cl2 (2.5 mL) and stirred at 25 °C for 12 h. The solvent was
evaporated and the crude product subjected to CC (SiO2; CH2Cl2/
EtOAc, 100:0 to 85:15) to afford 29 (55 mg, 75%) as a dark-green
metallic solid. Rf = 0.15 (SiO2; 3% EtOAc in CH2Cl2), m.p. 145–
150 °C (dec.). 1H NMR (400 MHz, CD2Cl2): δ = 1.49 (s, 18 H),
3.23 (s, 12 H), 6.83 (d, J = 9.2 Hz, 4 H), 7.15 (d, J = 9.9 Hz, 4 H),
7.34–7.51 (m, 8 H), 7.55 (dd, J = 6.0, 2.0 Hz, 2 H), 8.09 (d, J =
2.0 Hz, 2 H), 9.21 (d, J = 6.0 Hz, 2 H) ppm. 13C NMR (101 MHz,
CD2Cl2): δ = 29.69, 29.92, 36.01, 40.16, 60.22, 68.66, 91.45, 104.78,
112.22, 112.50, 114.47, 115.37, 119.76, 123.45, 125.14, 128.94,
131.82, 134.83, 151.65, 153.25, 153.50, 154.42, 155.94, 158.05,
166.06 (25 signals observed out of 28 expected) ppm. HR-MALDI-
MS (3-HPA; pos.): m/z (%) = 1208.4163 (100) [M + H]+ (calcd. for
C66H53N12195Pt+: 1208.4158).
cis-Bis(4,4-dicyano-3-{[4-(dicyanomethylene)cyclohexa-2,5-dien-1-
ylidene][4-(dimethylamino)phenyl]methyl}but-3-en-1-ynyl)[1,2-bis-
(dicyclohexylphosphanyl)ethane]platinum (31): Pt complex 20
(20.0 mg, 0.021 mmol) and TCNQ (8.6 mg, 0.042 mmol) were dis-
solved in CH2Cl2 (0.5 mL) and the mixture was stirred at 25 °C for
12 h. The solvent was evaporated and the crude product subjected
to CC (SiO2; 2% EtOAc in CH2Cl2) to afford 31 (17.9 mg, 85%)
as a dark-green metallic solid. Rf = 0.36 (SiO2; 3% EtOAc in
1
CH2Cl2). H NMR (400 MHz, CD2Cl2): δ = 0.92–1.43 (m, 18 H),
1.58–2.11 (m, 32 H), 3.21 (s, 12 H), 6.85 (d, J = 9.2 Hz, 4 H), 7.11–
7.31 (m, 4 H), 7.31–7.43 (m, 4 H), 7.51 ppm (d, J = 9.0 Hz, 4 H).
13C NMR (101 MHz, CD2Cl2): δ = 22.81 [dd, 1J(P-C) = 31.8, 2J(P-
C) = 8.9 Hz], 25.66, 26.29–26.53 (m), 26.58, 28.40, 29.03, 34.67
1
[d, J(P–C) = 31.5 Hz], 40.08, 68.31, 90.16, 112.41, 112.71, 113.31,
113.51, 113.60, 115.38, 122.68, 123.61, 124.25, 128.74, 134.95,
135.19, 136.22, 153.25, 153.37, 154.53, 157.38 ppm. 31P NMR
(121 MHz, CD2Cl2):
δ
=
63.88 (s), 63.88 [d, 1J(Pt-P)
=
=
2248.7 Hz] ppm. HR-MALDI-MS (3-HPA; pos.): m/z (%)
[7] M. Kivala, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross,
F. Diederich, Chem. Commun. 2007, 4731–4733.
136.5539 (100) [M]+ (calcd. for C74H78N10P2195Pt+: 1363.5539).
[8] S.-i. Kato, M. Kivala, W. B. Schweizer, C. Boudon, J.-P. Gissel-
brecht, F. Diederich, Chem. Eur. J. 2009, 15, 8687–8691.
[9] a) M. Kivala, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross,
F. Diederich, Angew. Chem. 2007, 119, 6473–6477; Angew.
Supporting Information (see footnote on the first page of this arti-
cle): Further synthetic details, UV/Vis spectra, X-ray data and
NMR spectra.
12
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0