ChemComm
Communication
Chem. Soc. Rev., 2011, 40, 1926; (c) F. Collet, R. H. Dodd and P. Dauban,
Chem. Commun., 2009, 5061; (d) H. M. L. Davies and J. R. Manning,
Nature, 2008, 451, 417; (e) P. Mu¨ller and C. Fruit, Chem. Rev., 2003,
103, 2905; ( f ) G. Dequirez, V. Pons and P. Dauban, Angew. Chem., Int. Ed.,
2012, 51, 7384; (g) H. Lu and X. P. Zhang, Chem. Soc. Rev., 2011, 40, 1899;
(h) C. M. Che, V. K.-Y. Lo, C. Y. Zhou and J.-S. Huang, Chem. Soc. Rev.,
2011, 40, 1950.
4 (a) H. Kwart and A. A. Kahn, J. Am. Chem. Soc., 1967, 89, 1950;
(b) M. M. Diaz-Requejo, T. R. Belderrain, M. C. Nicasio, S. Trofimenko
and P. J. Perez, J. Am. Chem. Soc., 2003, 125, 12078; (c) M. R. Fructos,
S. Trofimenko, M. M. Diaz-equejo and P. J. Perez, J. Am. Chem. Soc., 2006,
128, 11784; (d) Z. Li, R. W. Quan and E. N. Jacobsen, J. Am. Chem. Soc.,
1995, 117, 5889; (e) M. M. Diaz-Requejo, P. J. Perez, M. Brookhart and
J. L. Templeton, Organometallics, 1997, 16, 4399; ( f ) Y. M. Badiei,
A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T. R. Cundari
and T. H. Warren, Angew. Chem., Int. Ed., 2008, 47, 9961.
Scheme 3 The kinetic deuterium isotope effect of reactions between 1c/1r
and DMSO.
5 (a) Y.-F. Wang, X. Zhu and S. Chiba, J. Am. Chem. Soc., 2012,
134, 3679; (b) Y.-F. Wang, H. Chen, X. Zhu and S. Chiba, J. Am.
Chem. Soc., 2012, 134, 11980.
6 G. Brasche and S. L. Buchwald, Angew. Chem., Int. Ed., 2008, 47, 1932.
7 T. Xiong, Y. Li, X.-H. Bi, Y.-H. Lv and Q. Zhang, Angew. Chem.,
Int. Ed., 2011, 50, 7140.
8 (a) T. Xiong, Y. Li, L.-J. Mao, Q. Zhang and Q. Zhang, Chem.
Commun., 2012, 48, 2246; (b) Z.-K. Ni, Q. Zhang, T. Xiong,
Y.-Y. Zheng, Y. Li, H.-W. Zhang, J.-P. Zhang and Q. Liu, Angew.
Chem., Int. Ed., 2012, 51, 1244; (c) K. Sun, Y. Li, T. Xiong, J.-P. Zhang
and Q. Zhang, J. Am. Chem. Soc., 2011, 133, 1694; (d) T. Xiong, Y. Li,
Y.-H. Lv and Q. Zhang, Chem. Commun., 2010, 46, 6831.
9 Q. Xiao, W.-H. Wang, G. Liu, F.-K. Meng, J.-H. Chen, Z. Yang and
Z.-J. Shi, Chem.–Eur. J., 2009, 15, 7292.
10 For selected examples of quinazolines in medicinal chemistry, see:
(a) B. A. Foster, H. A. Coffrey, M. J. Morin and F. Rastinejad, Science, 1999,
286, 2507; (b) R. Gundla, R. Kazemi, R. Sanam, R. Muttineni, J. A. R. P.
Sarma, R. Dayam and N. Neamati, J. Med. Chem., 2008, 51, 3367; (c) A. Lu¨th
Scheme 4 Possible mechanism for the synthesis of quinazolines 2.
undergoes a C–N bond formation reaction via nitrene insertion into
the C(sp3)–H bond of DMSO to give intermediate E. Finally, in the
presence of H+, the cleavage of the C–S bond19 gives an iminium
species G, which undergoes an electrophilic addition reaction or
electrocyclization20 with the aromatic ring to provide dihydro-
quinazolines 2a–2f and in the presence of an oxidant, the following
aromatization reaction gives the quinazoline products 2k–2ab. Since
the possible copper-nitrene species C (might exist with its equili-
brium intermediate B) is sterically hindered, the steric effect might
play an important role in the annulation reaction (no reaction occurs
starting from 1g–1j (Table 1) and DEF and DEA (Scheme 2)).
In summary, we have succeeded in developing an efficient
Cu-catalyzed synthesis of quinazolines from amidines and DMSO,
DMF, DMA, NMP or TMEDA through direct oxidative amination of
N–H bonds and methyl C(sp3)–H bonds followed by intramolecular
C–C bond formation reactions. The generality and high selectivity of
the annulation reaction towards various C(sp3)–H bonds together
with employing readily available amidines as the substrates made
this method very attractive. Further studies utilizing this strategy for
the construction of various C–N bonds are ongoing in our lab.
Financial support of this research by the SRFDP (20110043110002),
the NNSFC (21172033, 21202014), the Fundamental Research
Funds for the Central Universities (11GJHZ001, 11QNJJ015) and
NENU-10SSXT139 is greatly acknowledged.
¨
and W. Lowe, Eur. J. Med. Chem., 2008, 43, 1478; (d) A. Lewerenz,
S. Hentschel, Z. Vissiennon, S. Michael and K. Nieber, Drug Dev. Res.,
2003, 58, 420; (e) L. A. Doyle and D. D. Ross, Oncogene, 2003, 22, 7340.
11 D. W. Fry, A. J. Kraker, A. McMichael, L. A. Ambroso, J. M. Nelson,
W. R. Leopold, R. W. Connors and A. J. Bridges, Science, 1994, 265, 1093.
12 E. A. Henderson, V. Bavetsias, D. S. Theti, S. C. Wilson, R. Clauss
and A. L. Jackman, Bioorg. Med. Chem., 2006, 14, 5020.
13 (a) T. C. Chien, C. S. Chen, F. H. Yu and J. W. Chern, Chem. Pharm.
Bull., 2004, 52, 1422; (b) T. Herget, M. Freitag, M. Morbitzer,
R. Kupfer, T. Stamminger and M. Marschall, Antimicrob. Agents
Chemother., 2004, 48, 4154.
14 (a) K. Waisser, J. Gregor, H. Dostal, J. Kunes, L. Kubicova, V. Klimesova
and J. Kaustova, Farmaco, 2001, 56, 803; (b) J. Kunes, J. Bazant, M. Pour,
K. Waisser, M. Slosarek and J. Janota, Farmaco, 2000, 55, 725.
15 For recent reviews, see: (a) D. J. Connolly, D. Cusack, T. P. O’Sullivan and
P. J. Guiry, Tetrahedron, 2005, 61, 10153; (b) J. P. Michael, Nat. Prod. Rep.,
2007, 24, 223. For recent reports on synthesis of quinazolines from anilines
bearing an ortho-functional group, see: (c) J. Zhang, D. Zhu, C. Yu, C. Wan
and Z. Wang, Org. Lett., 2010, 12, 2841; (d) C. U. Maheswari, G. S. Kumar,
M. Venkateshwar, R. A. Kumar, M. L. Kantam and K. R. Reddy, Adv. Synth.
Catal., 2010, 352, 341; (e) S. Ferrini, F. Ponticelli and M. Taddei, Org. Lett.,
2007, 9, 69; (f ) B. Han, X.-L. Yang, C. Wang, Y.-W. Bai, T.-C. Pan, X. Chen
and W. Yu, J. Org. Chem., 2012, 77, 1136; (g) Y. Zhang, C. Feng, Z. Zha and
Z. Wang, Angew. Chem., Int. Ed., 2012, 51, 8077.
16 (a) B. Charpiot, J. Brun, I. Donze, R. Naef, M. Stefani and T. Mueller,
Bioorg. Med. Chem. Lett., 1998, 8, 2891; (b) W. Zielinski, A. Kudelko
and E. M. Holt, Heterocycles, 1998, 48, 319; (c) B. Ma, Y. Wang, J. Peng
and Q. Zhu, J. Org. Chem., 2011, 76, 6362; (d) Y. Ohta, Y. Tokimizu,
S. Oishi, N. Fujii and H. Ohno, Org. Lett., 2010, 12, 3963; (e) Y. Wang,
H. Wang, J. Peng and Q. Zhu, Org. Lett., 2011, 13, 4604; ( f ) M. A.
Mcgowan, C. Z. Mcavoy and S. L. Buchwald, Org. Lett., 2012, 14, 3800;
(g) S. K. Robev, Tetrahedron Lett., 1983, 24, 4351.
17 (a) A. J. Hickman and M. S. Sanford, Nature, 2012, 484, 177; (b) K. M. Engle,
T.-S. Mei, X.-S. Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2011, 50, 1478.
Notes and references
1 (a) R. Hili and A. K. Yudin, Nat. Chem. Biol., 2006, 2, 284; 18 S. Kundu, E. Miceli, E. Farquhar, F. F. Pfaff, U. Kuhlmann, P. Hildebrandt,
(b) T. Henkel, R. M. Brunne, H. Mu¨ller and F. Reichel, Angew.
Chem., Int. Ed., 1999, 38, 643.
2 (a) J. A. Labinger and J. E. Bercaw, Nature, 2002, 417, 507;
(b) K. Godula and D. Sames, Science, 2006, 312, 67.
B. Braun, C. Greco and K. Ray, J. Am. Chem. Soc., 2012, 134, 14710.
19 (a) A. J. Mancuso and D. Swern, Synthesis, 1981, 165; (b) S. Hanessian,
G. Yang-Chung, P. Lavallee and A. G. Pernet, J. Am. Chem. Soc., 1972,
94, 8929.
3 For selected reviews, see: (a) R. Breslow and S. H. Gellman, J. Chem. Soc., 20 (a) M. L. Meketa and S. M. Weinreb, Tetrahedron, 2007, 37, 9112;
Chem. Commun., 1982, 1400; (b) F. Collet, C. Lescot and P. Dauban,
(b) M. L. Meketa and S. M. Weinreb, Org. Lett., 2007, 9, 853.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.