4112 Ghafouri et al.
Asian J. Chem.
3H, J = 7.1 Hz, CH3), 3.37-3.45 (m, 1H, CH), 4.14 (q, 2H, J =
7.1 Hz, OCH2), 4.39 (q, 2H, J = 7.1 Hz, OCH2), 4.44 (q, 2H,
J = 7.1 Hz, OCH2), 7.37 (t, 1H, J = 7.3 Hz, CH), 7.98 (t, 1H,
J = 8.9 Hz, CH), 8.65 (d, 1H, J = 8.9 Hz, CH), 9.54 (d, 1H,
J = 7.4 Hz, CH) ppm. 13C NMR δ = 13.3 (CH3), 13.4 (CH3),
13.8 (CH3), 24.3 (2CH2), 25.0 (CH2), 33.2 (2CH2), 49.0 (CHN),
61.6, (OCH2), 61.8 (OCH2), 61.9 (OCH2), 104.0 (C), 114.8
(C), 118.6 (CH), 124.7 (CH), 129.5 (CH), 137.7 (CH), 145.7
(C), 148.9 (C), 156.7 (N-C=N), 164.2 (C=O), 165.0 (C=O),
165.2 (C=O) ppm. Anal. calcd. (%) for C24H30N2O6 (442): C,
62.67; H, 6.51; N, 6.96; Found (%): C, 62.23; H, 6.70; N,
7.12. MS (EI, 70 eV): m/z (%) = 442 (M+, 5), 346 (90), 316
(90), 242 (100), 170 (60).
calcd. (%) for C25H26N2O6 (450): C, 66.66; H, 5.82; N, 6.22;
Found (%): C, 66.74; H, 5.68; N, 6.15.
The reactions proceeded spontaneously in CH2Cl2 and
1
were completed within a few hours. The H and 13C NMR
spectra of the crude products clearly indicated the formation
of 3 and 4. The structures of compounds 4a-c were deduced
from their elemental analyses and their IR, 1H and 13C NMR
spectra.
Although the mechanistic details of the reaction are not
clearly known, a plausible rationalization may be advanced to
explain the product formation. Presumably, the zwitter ion 5
formed from pyridine and the acetylenic compound4-7 adds to
the dicyclocarbodiimide to furnish intermediate 6, which then
adds to another molecule of acetylenic ester to produce 7. This
intermediate undergoes cyclization to furnish the fused
structure 8. Intermediate 8 is converted to 9 by recyclization
and then by elimination of 10, the product 4 is produced
(Scheme-II).
Tri(tert-butyl) 2-(cyclohexylimino)-2H-quinolizine-
1,3,4-tricaboxylate (4c): Yellow powder; yield: 0.50 g (48
%), m.p. 157-159 ºC. IR (KBr, νmax, cm-1): 1739, 1712 and
1660 (3C=O), 1625 (C=N). 1H NMR δ = 1.21-1.95 (10 H, m,
5 CH2), 1.57 (s, 9H, CMe3), 1.62 (s, 9H, CMe3), 1.64 (s, 9H,
CMe3), 3.34-3.42 (m, 1H, CH), 7.51 (t, 1H, J = 6.7 Hz, Hz,
CH), 7.94 (t, 1H, J = 8.6 Hz, CH), 8.75 (d, 1H, J = 9.0 Hz,
R
CO2R'
N
13
2
+
+
C
N
R
+
CH), 9.48 (d, 1H, J = 7.1 Hz, CH) ppm. C NMR δ = 24.9
_
N
N
N
+
+
(2CH2), 25.5 (CH2), 33.8 (2CH2), 27.9 (CMe3), 28.1 (CMe3),
28.2 (CMe3), 49.4 (CHN), 81.2 (C), 82.8 (C), 83.2 (C), 103.9
(C), 115.0 (C), 118.8 (CH), 124.8 (CH), 129.6 (CH), 138.1
(CH), 145.3 (C), 145.7 (C), 156.6 (N-C=N), 162.1 (C=O),
164.3 (C=O), 164.8 (C=O) ppm. Anal. calcd. (%) for
C30H42N2O6 (526): C, 68.42; H, 8.04; N, 5.32; Found (%): C,
68.49; H, 7.98; N, 5.26
CO2R'
NR
_
C
R'O2C
R'O2C
R'O2C
2
NR
1
CO2R'
5
6
R
N
CO2R'
CO2R'
CO2R'
_
_
H
CO2R'
NR
10
CO2R'
R
4
CO2R'
N
N
N
+
CO2R'
NR
N
N
R'O2C
R'O2C
CR'O2C
R'O2C
R
CO2R'
R'O2C
NR
NR
Trimethyl 1-(cyclohexylimino)-1H-pyrido-[1,2-a]-
quinoline-2,3,4-tricaboxylate (11): Yellow powder; yield:
0.54 g (60 %), m.p. 162 ºC. IR (KBr, νmax, cm-1): 1738, 1714
8
7
9
Scheme-II
1
and 1660 (3 C=O), 1624 (C=N). H NMR δ: 0.87-1.36 (m,
Quinoline and isoquinoline were employed to react with
dimethyl acetylenedicarboxylates1 and dicyclohexylcarbo
diimde 2 under above conditions produce trimethyl 3-(cyclo-
hexylimino) 3H-pyrido[1,2-a]quinoline-1,2,4-tricarboxylates
11 and trimethyl 2-(cyclohexylimino) 2H-pyrido[2,1-
a]isoqunoline-1,3,4-tricarboxylates 12, respectively (Scheme-
III).
10H, 5CH2), 3.58-3.76 (m, 1H, CHN), 3.88 (s, 3H, OCH3),
3.94 (s, 6H, 2OCH3), 6.87 (dt, 1H, J = 6.7 Hz and J = 1.0 Hz,
CH), 7.70 (dt, 1H, J = 8.6 Hz and J = 1.3 Hz, CH), 7.85 (d,
1H, J = 9.4 Hz, CH), 8.01 (dd, 1H, J = 7.8Hz and J = 1.5 Hz,
CH), 8.15 (d, 1H, J = 8.6 Hz, CH), 8.25 (d, 1H, J = 9.4 Hz,
CH) ppm. 13C NMR δ: 24.4 (2CH2), 25.6 (CH2), 31.1 (2CH2),
49.8 (CHN), 51.8 (OCH3), 52.8 (2OCH3), 104.3 (C), 118.2
(C), 120.3 (C), 126.2 (CH), 126.8 (CH), 129.3 (CH), 129.7
(CH), 129.9 (CH), 131.3 (C), 131.9 (C), 133.4 (C), 137.9 (CH),
155.2 (N-C=N), 162.7 (C=O), 163.6 (C=O), 165.7 (C=O) ppm.
Anal. calcd. (%) for C25H26N2O6 (450): C, 66.66; H, 5.82; N,
6.22; Found (%): C, 66.58; H, 5.78; N, 6.17.
CO2Me
CO2Me
N
N
CO2Me
N
N
MeO2C
MeO2C
CO2Me
Trimethyl 4-(cyclohexylimino)-4H-pyrido[2,1-a]-
isoquinoline-1,2,3-tricaboxylate (12):Yellow powder; yield:
0.58 g (65 %), m.p. 178 ºC. IR (KBr, νmax, cm-1): 1739, 1720
11
12
Scheme-III
1
and 1665 (3C=O), 1619 (C=N). H NMR δ: 1.01-1.84 (m,
REFERENCES
10H, 5CH2), 3.54-3.65 (m, 1H, CHN), 3.90 (s, 3H, OCH3),
3.92 (s, 3H, OCH3), 3.93 (s, 3H, OCH3), 7.50 (d, 1H, J = 7.5
Hz, CH), 7.66-7.76 (m, 3H, 3CH), 7.93 (dd, 1H, J = 7.5 Hz
and J = 1.3 Hz, CH), 9.33 (d, 1H, J = 7.5 Hz) ppm. 13C NMR
δ: 23.6 (2CH2), 25.2 (CH2), 30.8 (CH2), 31.0 (CH2), 49.2
(CHN), 52.4 (2OCH3), 52.8 (OCH3), 105.1 (C), 116.8 (C),
124.8 (C), 125.1 (CH), 127.5 (CH), 128.2 (CH), 128.8 (CH),
130.2 (CH), 130.7 (C), 131.0 (C), 132.0 (C), 137.9 (CH), 156.4
(N-C=N), 162.5 (C=O), 163.3 (C=O), 166.1 (C=O) ppm.Anal.
1. W. Eberbach and W. Maier, Tetrahedron Lett., 30, 5591 (1989).
2. F.J. Swinbourne, J.H. Hunt and G. Klinkert, Adv. Heterocycl. Chem.,
23, 103 (1978).
3. O. Diels and K. Alder, Justus Liebigs Ann. Chem., 498, 16 (1932).
4. R.M. Acheson and J. Woollard, J. Chem. Soc. Perkin Trans. I, 438
(1975).
5. R.M. Acheson and A.O. Plunkett, J. Chem. Soc., 2676 (1964).
6. R.M. Acheson and B.J. Jones, J. Chem. Soc., 748 (1962).
7. R.M. Acheson, M.W. Foxton and A.R. Hands, J. Chem. Soc., 387
(1968).