Communication
ChemComm
Science, 2013, 339, 819; ( f ) P. Mali, L. Yang, K. M. Esvelt, J. Aach,
M. Guell, J. E. DiCarlo, J. E. Norville and G. M. Church, Science, 2013,
339, 823.
3 (a) M. A. Kotterman and D. V. Schaffer, Nat. Rev. Genet., 2014,
15, 445; (b) D. Wang, P. W. L. Tai and G. Gao, Nat. Rev. Drug
¨
Discovery, 2019, 18, 358; (c) U. Lachelt and E. Wagner, Chem. Rev.,
2015, 115, 11043; (d) A. M. Wen and N. F. Steinmetz, Chem. Soc. Rev.,
2016, 45, 4074; (e) H.-X. Wang, M. Li, C. M. Lee, S. Chakraborty,
H.-W. Kim, G. Bao and K. W. Leong, Chem. Rev., 2017, 117, 9874.
4 (a) C. Morrison, Nat. Biotechnol., 2015, 33, 217; (b) J. Hoggatt, Cell,
2016, 166, 263.
5 (a) C. E. Thomas, A. Ehrhardt and M. A. Kay, Nat. Rev. Genet., 2003,
4, 346; (b) F. Mingozzi and K. A. High, Blood, 2013, 122, 23.
6 (a) S. Li and L. Huang, Gene Ther., 2000, 7, 31; (b) A. M. Darquet,
R. Rangara, P. Kreiss, B. Schwartz, S. Naimi, P. Delaere, J. Crouzet
and D. Scherman, Gene Ther., 1999, 6, 209; (c) F. Schakowski,
M. Gorschluter, C. Junghans, M. Schroff, P. Buttgereit, C. Ziske,
B. Schottker, S. A. Konig-Merediz, T. Sauerbruch, B. Wittig and
I. G. Schmidt-Wolf, Mol. Ther., 2001, 3, 793; (d) M. Wang, Z. A. Glass
and Q. Xu, Gene Ther., 2017, 24, 144.
7 (a) N. Bessis, F. J. GarciaCozar and M. C. Boissier, Gene Ther., 2004,
11, 10; (b) A. Reyes-Sandoval and H. C. Ertl, Mol. Ther., 2004, 9, 249.
8 (a) S. Li, M. Brisson, Y. He and L. Huang, Gene Ther., 1997, 4, 449;
(b) C. R. Hofman, J. P. Dileo, Z. Li, S. Li and L. Huang, Gene Ther., 2001,
8, 71.
9 (a) M. A. Zanta, P. Belguise-Valladier and J. P. Behr, Proc. Natl. Acad. Sci.
U. S. A., 1999, 96, 91; (b) M. Taki, Y. Kato, M. Miyagishi, Y. Takagi and
K. Taira, Angew. Chem. Int. Ed., 2004, 43, 3160; (c) N. Abe, H. Abe and
Y. Ito, J. Am. Chem. Soc., 2007, 129, 15108; (d) N. Abe, H. Abe,
T. Ohshiro, Y. Nakashima, M. Maeda and Y. Ito, Chem. Commun.,
2011, 47, 2125; (e) L. Zhang, D. Liang, Y. Wang, D. Li, J. Zhang, L. Wu,
M. Feng, F. Yi, L. Xu, L. Lei, Q. Du and X. Tang, Chem. Sci., 2018, 9, 44;
( f ) L. Wei, L. Cao and Z. Xi, Angew. Chem. Int. Ed., 2013, 52, 6501.
10 (a) A. Eschenmoser, Science, 1999, 284, 2118; (b) F. R. Steele and
L. Gold, Nat. Biotechnol., 2012, 30, 624; (c) V. B. Pinheiro, A. I. Taylor,
C. Cozens, M. Abramov, M. Renders, S. Zhang, J. C. Chaput,
J. Wengel, S. Y. Peak-Chew, S. H. McLaughlin, P. Herdewijn and
P. Holliger, Science, 2012, 336, 341; (d) J. C. Chaput and P. Herdewijn,
Angew. Chem., Int. Ed., 2019, 58, 11570.
11 (a) D. A. Dean, Nat. Rev. Drug Discovery, 2000, 44, 81; (b) M. A. Campbell
and J. Wengel, Chem. Soc. Rev., 2011, 40, 5680; (c) A. Khvorova and
J. K. Watts, Nat. Biotechnol., 2017, 35, 238; (d) D. E. Ryan, D. Taussig,
I. Steinfeld, S. M. Phadnis, B. D. Lunstad, M. Singh, X. Vuong,
K. D. Okochi, R. McCaffrey, M. Olesiak, S. Roy, C. W. Yung, B. Curry,
J. R. Sampson, L. Bruhn and D. J. Dellinger, Nucleic Acids Res., 2018,
46, 792; (e) P. Kumar, R. G. Parmar, C. R. Brown, J. L. S. Willoughby,
D. J. Foster, I. R. Babu, S. Schofield, V. Jadhav, K. Charisse, J. K. Nair,
K. G. Rajeev, M. A. Maier, M. Egli and M. Manoharan, Chem. Commun.,
2019, 55, 5139; ( f ) Y. Yu, Y. Guo, Q. Tian, Y. Lan, H. Yeh, M. Zhang,
I. Tasan, S. Jain and H. Zhao, Nat. Chem. Biol., 2020, 16, 387.
12 (a) K. Schoning, P. Scholz, S. Guntha, X. Wu, R. Krishnamurthy and
A. Eschenmoser, Science, 2000, 290, 1347; (b) H. Yu, S. Zhang and
J. C. Chaput, Nat. Chem., 2012, 4, 183; (c) H. Mei, J. Y. Liao,
R. M. Jimenez, Y. Wang, S. Bala, C. McCloskey, C. Switzer and
J. C. Chaput, J. Am. Chem. Soc., 2018, 140, 5706; (d) A. E. Rangel,
Z. Chen, T. M. Ayele and J. M. Heemstra, Nucleic Acids Res., 2018,
46, 8057; (e) L. S. Liu, H. M. Leung, D. Y. Tam, T. W. Lo, S. W. Wong
and P. K. Lo, ACS Appl. Mater. Interfaces, 2018, 10, 9736; ( f ) F. Wang,
L. S. Liu, C. H. Lau, T. J. Han Chang, D. Y. Tam, H. M. Leung, C. Tin
and P. K. Lo, ACS Appl. Mater. Interfaces, 2019, 11, 38510.
Fig. 3 Gene expression analysis in HEK-293T cells. (a) Fluorescence
microscope images of the expression of EGFP in HEK-293T cells trans-
fected with 0.5 pmol naked linear EGFP gene (F1 + R1) and terminal-closed
linear EGFP gene (F3 + R3) for different time periods. Scale bar: 50 mm.
(b) Statistical result of the relative EGFP intensity of HEK-293T cells treated
with F1 + R1 and F3 + R3 using Image J analysis (*P o 0.05). (c) Flow
cytometry analysis of the expression of EGFP in HEK-293T cells trans-
fected with PBS, F1 + R1, and F3 + R3 for 60 h.
(Z191100004819008), the Strategic Priority Research Program of
Chinese Academy of Sciences (XDB36000000), Key Research Pro-
gram of Frontier Sciences, CAS, Grant QYZDB-SSW-SLH029, CAS
Interdisciplinary Innovation Team and K. C. Wong Education
Foundation (GJTD-2018-03).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) L. Naldini, Nature, 2015, 526, 351; (b) D. Castanotto and
J. J. Rossi, Nature, 2009, 457, 426; (c) D. B. T. Cox, R. J. Platt and
F. Zhang, Nat. Med., 2015, 21, 121.
2 (a) E. Uhlmann and A. Peyman, Chem. Rev., 1990, 90, 543; (b) A. Fire,
S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver and C. C. Mello,
Nature, 1998, 391, 806; (c) S. M. Elbashir, J. Harborth, W. Lendeckel,
A. Yalcin, K. Weber and T. Tuschl, Nature, 2001, 411, 494; (d) M. Jinek,
K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna and E. Charpentier,
Science, 2012, 337, 816; (e) L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto, 13 S. P. Sau, N. E. Fahmi, J. Y. Liao, S. Bala and J. C. Chaput, J. Org.
N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini and F. Zhang,
Chem., 2016, 81, 2302.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020