ChemComm
Communication
and elimination chemistry. The facile construction of the
quinazoline skeleton and simple manipulation might be useful
for the design and generation of a quinazolines’ library.
This work was supported by the National Natural Science
Foundation of China (21102080) and the Tsinghua University
Initiative Scientific Research Program (2011Z02150).
Notes and references
Scheme 4 Quinazoline 6 formed from the reaction of 1a and aromatic nitrile
with valeronitrile 2j as the second nitrile (see ESI† for details).
1 J. P. Michael, Nat. Prod. Rep., 2008, 25, 166; C. Wattanapiromsakul,
P. I. Forster and P. G. Waterman, Phytochemistry, 2003, 64, 609;
Z.-Z. Ma, Y. Hano, T. Nomura and Y.-J. Chen, Heterocycles, 1997,
46, 541; S. Yoshida, T. Aoyagi, S. Harada, N. Matsuda, T. Ikeda,
H. Naganawa, M. Hamada and T. Takeuchi, J. Antibiot., 1991,
44, 111; Y. Deng, R. Xu and Y. Ye, J. Chin. Pharm. Sci., 2000, 9, 116.
2 P. Verhaeghe, N. Azas, M. Gasquet, S. Hutter, C. Ducros, M. Laget,
S. Rault, P. Rathelot and P. Vanelle, Bioorg. Med. Chem. Lett., 2008,
18, 396; E. L. Ellsworth, T. P. Tran, H. D. H. Showalter, J. P. Sanchez,
B. M. Watson, M. A. Stier, J. M. Domagala, S. J. Gracheck, E. T. Joannides,
M. A. Shapiro, S. A. Dunham, D. L. Hanna, M. D. Huband, J. W. Gage,
J. C. Bronstein, J. Y. Liu, D. Q. Nguyen and R. Singh, J. Med. Chem., 2006,
49, 6435; E. A. Henderson, V. Bavetsias, D. S. Theti, S. C. Wilson,
R. Clauss and A. L. Jackman, Bioorg. Med. Chem., 2006, 14, 5020;
T.-C. Chien, C.-S. Chen, F.-H. Yu and J.-W. Chern, Chem. Pharm. Bull.,
2004, 52, 1422; T. Herget, M. Freitag, M. Morbitzer, R. Kupfer,
T. Stamminger and M. Marschall, Antimicrob. Agents Chemother., 2004,
48, 4154; L. A. Doyle and D. D. Ross, Oncogene, 2003, 22, 7340; K. Waisser,
J. Gregor, H. Dostal, J. Kunes, L. Kubicova, V. Klimesova and J. Kaustova,
Farmaco, 2001, 56, 803; J. Kunes, J. Bazant, M. Pour, K. Waisser,
M. Slosarek and J. Janota, Farmaco, 2000, 55, 725; A. Foster,
H. A. Coffrey, M. J. Morin and F. Rastinejad, Science, 1999, 286, 2507;
C. S. Genther and C. C. Smith, J. Med. Chem., 1977, 20, 237.
3 T. P. Selvam and P. V. Kumar, Res. Pharm., 2011, 1, 1; A. Luth and W. Lowe,
Eur. J. Med. Chem., 2008, 43, 1478; G. W. Rewcastle, B. D. Palmer, A. J.
Bridges, H. D. H. Showalter, L. Sun, J. Nelson, A. McMichael, A. J. Kraker,
D. W. Fry and W. A. Denny, J. Med. Chem., 1996, 39, 918.
4 T. Besson and E. Chosson, Comb. Chem. High Throughput Screening,
2007, 10, 903; D. J. Connolly, D. Cusack, T. P. O’Sullivan and
P. J. Guiry, Tetrahedron, 2005, 61, 10153; J. P. Michael, Nat. Prod.
Rep., 2003, 20, 476; K. Undheim and T. Benneche, Comprehensive
Heterocyclic Chemistry II, Pergamon, Oxford, 1998, vol. 6, p. 93.
5 S. J. Niementowski, J. Prakt. Chem., 1895, 51, 564; A. Bischler, Ber.Dtsch.
Chem. Ges., 1891, 24, 506; A. Riedel, Ger. Pat., 1905, 174, 941; G. Marzaro,
A. Chilin, G. Pastorini and A. Guiotto, Org. Lett., 2006, 8, 255.
In the preparation of these quinazolines, we often observed
N-aryl amide as a byproduct by GC-MS (around 10% yield). This
phenomena was attributed to the hydrolysis of the N-aryl nitrilium
salt formed during the reaction.7,10 Actually, Ph2IPF6 1a and
1-naphthonitrile (1 eq.) were heated with Cu(OTf)2 (0.2 eq.) at
120 1C for 2 h to give N-phenyl 1-naphthonitrilium 7, which was
identified by HRMS. The hydrolysis of 7 gave N-phenyl-1-
naphthamide 8 in isolated 88% yield (eqn (1), see also ESI†).
(1)
Based on the above findings and previous report, we proposed
a mechanism for this reaction with an Ar–Cu(III) species involved
shown in Scheme 5. At the beginning, Cu(OTf)2 is converted to
Cu(I) via reduction or disproportion and then oxidative addition
to the Cu(I) species by the diaryliodonium salt (exemplified as
Ph2I+) gives a Ph–Cu(III) species,11 which transfers the phenyl
group to the nitrile to give N-phenylnitrilium intermediate I.
Intermediate I would produce the anilide by hydrolysis.
N-phenylnitrilium species I is quickly attacked by the second
nitrile to give intermediate II, which undergoes an electrophilic
substitution on the aryl ring to give the quinazoline product.
In summary, an efficient one-pot approach to multiple sub-
stituted quinazolines with diaryliodonium salts 1, and two nitriles
2 has been presented. The reactions are applicable to two different
nitriles to give a regio-selective product. This strategy of electro-
philic annulations enables great flexibility of the substitution
patterns on quinazolines and marks a significant departure from
known methods based on traditional carbonyl condensation,
6 Y. Yan, Y. Zhang, C. Feng, Z. Zha and Z. Wang, Angew. Chem.,
Int. Ed., 2012, 51, 8077; P. Sang, Y. Xie, J. Zou and Y. Zhang, Org.
Lett., 2012, 14, 3894; M. A. McGowan, C. Z. McAvoy and
S. L. Buchwald, Org. Lett., 2012, 14, 3800; C. Wang, S. Li, H. Liu,
Y. Jiang and H. Fu, J. Org. Chem., 2010, 75, 7936.
7 Y. Wang, C. Chen, J. Peng and M. Li, Angew. Chem., Int. Ed., 2013, 52, 5323;
S. Cai, C. Chen, Z. Sun and C. Xi, Chem. Commun., 2013, 49, 4552.
8 E. Skucas and D. W. C. MacMillan, J. Am. Chem. Soc., 2012,
134, 9090; M. Bielawski, M. Zhu and B. Olofsson, Adv. Synth. Catal.,
2007, 349, 2610; M. Bielawski and B. Olofsson, Chem. Commun.,
2007, 2521; M. Bielawski and B. Olofsson, Org. Synth., 2009, 86, 308.
9 M. S. Yusubov, A. V. Maskaev and V. V. Zhdankin, ARKIVOC, 2011, 370;
E. A. Merritt and B. Olofsson, Angew. Chem., Int. Ed., 2009, 48, 9052;
V. V. Zhdankin and P. J. Stang, Chem. Rev., 2008, 108, 5299; V. V. Zhdankin
and P. J. Stang, Chem. Rev., 2002, 102, 2523; V. V. Grushin, Chem. Soc. Rev.,
2000, 29, 315; P. J. Stang and V. V. Zhdankin, Chem. Rev., 1996, 96, 1123.
10 A. H. Moustafa, M. G. Hitzler, M. Lutz and J. C. Jochims, Tetrahedron,
1997, 53, 625; B. L. Booth, K. O. Jibodu and M. F. Proença, J. Chem.
Soc., Chem. Commun., 1980, 1151; F. Klages and W. Grill, Justus Liebigs
Ann. Chem., 1955, 594, 21; H. Meerwein, Angew. Chem., 1955, 67, 374;
H. Meerwein, P. Laasch, R. Mersch and J. Spille, Chem. Ber., 1956,
89, 209.
11 M. G. Suero, E. D. Bayle, B. S. L. Collins and M. J. Gaunt, J. Am.
Chem. Soc., 2013, 135, 5332; R. J. Phipps, L. McMurray, S. Ritter,
H. A. Duong and M. J. Gaunt, J. Am. Chem. Soc., 2012, 134, 10773;
B. Chen, X.-L. Hou, Y.-X. Li and Y.-D. Wu, J. Am. Chem. Soc., 2011,
133, 7668; B. Xiao, Y. Fu, J. Xu, T.-J. Gong, J.-J. Dai, J. Yi and L. Liu,
J. Am. Chem. Soc., 2010, 132, 468; R. J. Phipps and M. J. Gaunt,
Science, 2009, 323, 1593; R. J. Phipps, N. P. Grimster and M. J. Gaunt,
J. Am. Chem. Soc., 2008, 130, 8172.
Scheme 5 Proposed mechanism.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.