D. De Joarder, M. P. Jennings
FULL PAPER
chromatography (25% EtOAc/hexanes) to afford 32 as a light yel-
(R)-7-[2-(3,5-Dimethoxyphenyl)acetoxy]-4-oxooctanoic Acid (35):
To a solution of 34 (0.130 g, 0.310 mmol, 1.00 equiv.) in anhydrous
low oil (3.48 g, 62%). TLC: Rf = 0.7 (15% EtOAc/hexanes). 1H
NMR (360 MHz, CDCl3): δ = 6.42 (m, 2 H), 6.35 (m, 1 H), 5.83 CH2Cl2 (7.00 mL) under argon at 0 °C were added 2,6-lutidine
(m, 1 H), 4.89 (m, 1 H), 4.25 (m, 1 H), 3.76 (m, 6 H), 3.50 (s, 2
H), 1.48 (m, 11 H), 1.57 (m, 3 H), 1.19 (d, J = 6.3 Hz, 3 H), 0.89
(s, 9 H), 0.02 (m, 6 H) ppm. 13C NMR (125 MHz, CDCl3): δ =
170.9, 165.8, 160.8, 149.0, 136.2, 121.9, 107.2, 99.2, 80.2, 71.3, 71.1,
70.9, 55.2, 41.9, 32.9, 32.7, 31.0, 30.8, 28.1, 25.7, 19.9, 19.8, 18.1,
(0.0780 mL, 0.660 mmol, 2.10 equiv.) and TMSOTf (0.130 mL,
0.710 mmol, 2.25 equiv.) sequentially. The mixture was warmed to
room temp. and stirred until consumption of the starting material
according to TLC analysis. H2O (100 mL) was added to the mix-
ture, and the aqueous phase was acidified and extracted with
CH2Cl2 (3ϫ 50 mL). The combined organic extracts were dried
with anhydrous MgSO4, filtered, and concentrated in vacuo. The
crude product was purified by flash column chromatography (50%
EtOAc/hexanes) to afford 35 as a yellow viscous oil (0.0890 g,
79%). TLC: Rf = 0.3 (60% EtOAc/hexanes). [α]2D2 = –8.5 (c = 0.03,
–4.5, –4.9 ppm. IR (CH Cl ): ν = 3429, 2951, 2901, 2859, 2255,
˜
2
2
1723, 1658, 1601, 1464, 1430, 1369, 1300, 1251, 1205, 1152, 1068,
970, 913, 833, 776, 734 cm–1. HRMS (EI): calcd. for C28H46O7Si
[M+] 522.3013; found 522.3008.
1
tert-Butyl (R,E)-7-[2-(3,5-Dimethoxyphenyl)acetoxy]-4-oxooct-2-en-
oate (33): To a flame-dried round-bottomed flask with a solution
of 32 (2.00 g, 3.82 mmol, 1.00 equiv.) in anhydrous THF (20 mL)
under argon at 0 °C was added TBAF (1.0 m in THF, 7.60 mL,
2.00 equiv.). The reaction mixture was warmed to room temp. and
stirred until consumption of the starting material according to TLC
analysis. The reaction was quenched with water (200 mL) and the
mixture extracted with EtOAc (3ϫ 100 mL). The combined or-
ganic layers were dried with MgSO4, filtered, and the volatiles were
removed in vacuo to provide the crude alcohol, which was carried
further without purification. A solution of the corresponding
alcohol (0.700 g, 1.71 mmol, 1.00 equiv.) in CH2Cl2 (86.0 mL) at
0 °C was treated with Dess–Martin periodinane (1.45 g, 3.42 mmol,
2.00 equiv.). The reaction mixture was warmed to room temp. and
stirred for 2 h. The reaction was quenched with a saturated aque-
ous NaHCO3 solution (100 mL) and the mixture extracted with
CH2Cl2 (3ϫ 50 mL). The combined organic layers were washed
with a saturated aqueous Na2S2O3, dried with Na2SO4, filtered,
and the solvent was removed under reduced pressure to afford the
crude product. Purification of the crude product by flash column
chromatography (20% EtOAc/hexanes) afforded 33 as yellow oil
(0.54 g, 51% over two steps from 32). TLC: Rf = 0.1 (15% EtOAc/
hexanes). [α]2D2 = –9.6 (c = 0.033, CH2Cl2). 1H NMR (360 MHz,
CDCl3): δ = 6.86 (d, J = 15.9 Hz, 1 H), 6.50 (d, J = 16.1 Hz, 1 H),
6.42 (d, J = 2.3 Hz, 2 H), 6.36 (t, J = 2.3 Hz, 1 H), 4.91 (m, 1 H),
3.76 (s, 6 H), 3.50 (s, 2 H), 2.53 (m, 2 H), 1.86 (m, 2 H), 1.50 (s, 9
H), 1.23 (d, J = 6.4 Hz, 3 H) ppm. 13C NMR (125 MHz, CDCl3):
δ = 198.6, 170.7, 164.4, 160.7, 138.1, 132.6, 107.0, 99.0, 81.7, 70.3,
CH2Cl2). H NMR (360 MHz, CDCl3): δ = 6.42 (d, J = 2.2 Hz, 2
H), 6.36 (t, J = 2.2 Hz, 1 H), 4.89 (m, 1 H), 3.76 (s, 6 H), 3.50 (s,
2 H), 2.59 (m, 4 H), 2.36 (m, 2 H), 1.81 (m, 2 H), 1.21 (d, J =
6.0 Hz, 3 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 207.5, 177.9,
170.9, 160.8, 136.2, 107.2, 99.1, 70.6, 55.2, 41.9, 38.1, 36.6, 29.5,
27.6, 19.9 ppm. IR (CH Cl ): ν = 2939, 2840, 2251, 1719, 1597,
˜
2
2
1460, 1433, 1293, 1205, 1166, 1065, 905, 730,647 cm–1. HRMS (EI):
calcd. for C18H24O7 [M+] 352.1522; found 352.1525.
Acknowledgments
Support for this project was provided in part by the National Sci-
ence Foundation (USA) CAREER program under CHE-0845011.
[1] a) T. S. Bugni, C. M. Ireland, Nat. Prod. Rep. 2004, 21, 143; b)
D. J. Newman, G. M. Cragg, J. Nat. Prod. 2012, 75, 311.
[2] R.-A. Edrada, M. Heubes, G. Brauers, V. Wray, A. Berg, U.
Graefe, M. Wohlfarth, J. Muehlbacher, K. Schaumann, Sudar-
sono, G. Bringmann, P. Proksch, J. Nat. Prod. 2002, 65, 1598.
[3] a) O. C. Musgrave, J. Chem. Soc. 1956, 4301; b) O. C. Mus-
grave, J. Chem. Soc. 1957, 1104; c) A. J. Birch, O. C. Musgrave,
R. W. Richards, H. Smith, J. Chem. Soc. 1959, 3146.
[4] S. Lai, Y. Shizuri, S. Yamamura, K. Kawai, Y. Terada, H. Fu-
rukawa, Tetrahedron Lett. 1989, 30, 2241.
[5] a) K. Kinoshita, T. Sasaki, M. Awata, M. Takada, S. Yagin-
uma, J. Antibiot. 1997, 50, 961; b) J. He, E. M. K. Wijeratne,
B. P. Bashyal, J. Zhan, C. J. Seliga, M. X. Liu, E. E. Pierson,
L. S. Pierson III, H. D. VanEtten, A. L. L. Gunatilaka, J. Nat.
Prod. 2004, 67, 1985.
55.1, 41.8, 36.6, 29.3, 27.8, 19.9 ppm. IR (neat): ν = 2981, 2939,
˜
2840, 2255, 1723, 1601, 1471, 1430, 1365, 1304, 1255, 1156, 1065,
977, 909, 844, 730, 650 cm–1. HRMS (EI): calcd. for C22H30O7 [M+]
406.1992; found 406.2001.
[6] For syntheses of xestodecalactone A, see: a) G. Bringmann, G.
Lang, M. Michel, M. Heubes, Tetrahedron Lett. 2004, 45, 2829;
b) T. Yoshino, F. Ng, S. J. Danishefsky, J. Am. Chem. Soc. 2006,
128, 14185.
[7] For syntheses of both xestodecalactones B and C, see: a) Q.
Liang, J. Zhang, W. Quan, Y. Sun, X. She, X. Pan, J. Org.
Chem. 2007, 72, 2694; b) R. Pal, H. Rahaman, M. K. Gurjar,
Curr. Org. Chem. 2012, 16, 1159.
[8] For syntheses of xestodecalactone C, see: a) J. S. Yadav, N.
Thrimurtulu, K. U. Gayathri, B. V. S. Reddy, A. R. Prasad,
Tetrahedron Lett. 2008, 49, 6617; b) K. Rajesh, V. Suresh, J. J. P.
Selvam, C. Bhujanga Rao, Y. Venkateswarlu, Helv. Chim. Acta
2009, 92, 1866; c) J. S. Yadav, Y. G. Rao, K. Ravindar, B. V. S.
Reddy, A. V. Narsaiah, Synthesis 2009, 3157.
tert-Butyl (R)-7-[2-(3,5-Dimethoxyphenyl)acetoxy]-4-oxooctanoate
(34): To a solution of 33 (0.400 g, 0.908 mmol, 1.00 equiv.) in
MeOH (20.0 mL) at room temp. was added Pd/C (40.0 mg). The
mixture was then subjected to H2 (1 atm) and stirred at room temp.
until consumption of the starting material according to TLC analy-
sis. The catalyst was filtered off through Celite, and the filtrate was
concentrated to leave a crude residue. The residue was purified by
flash column chromatography (30% EtOAc/hexanes) to afford 34
as a light yellow oil (0.270 g, 68%). TLC: Rf = 0.2 (15% EtOAc/
hexanes). [α]2D2 = –5.1 (c = 0.016, CH2Cl2). 1H NMR (360 MHz,
CDCl3): δ = 6.41 (d, J = 2.2 Hz, 2 H), 6.34 (t, J = 2.2 Hz, 1 H),
4.87 (m, 1 H), 3.75 (s, 6 H), 3.48 (s, 2 H), 2.55 (m, 2 H), 2.40 (m,
4 H), 1.80 (m, 2 H), 1.40 (s, 9 H), 1.19 (d, J = 6.3 Hz, 3 H) ppm.
13C NMR (125 MHz, CDCl3): δ = 207.8, 171.8, 170.8, 160.7, 136.2,
107.1, 99.1, 80.4, 70.6, 55.2, 41.9, 38.2, 37.0, 29.5, 29.0, 27.9,
[9] J. S. Yadav, N. Thrimurtulu, K. U. Gayathri, B. V. S. Reddy,
A. R. Prasad, Synlett 2009, 790.
[10] For previous total syntheses of curvularin, see: a) H. Gerlach,
Helv. Chim. Acta 1977, 60, 3039; b) F. Bracher, B. Schulte, Nat.
Prod. Lett. 1995, 7, 65; c) F. Bracher, B. Schulte, Liebigs Ann./
Recueil 1997, 1979; d) S. Elzner, D. Schmidt, D. Schollmeyer,
G. Erkel, T. Anke, H. Kleinert, U. Foerstermann, H. Kunz,
ChemMedChem 2008, 3, 924; e) D. K. Mohapatra, H. Raha-
man, R. Pal, M. K. Gurjar, Synlett 2008, 1801; f) P. M. Tad-
ross, S. C. Virgil, B. M. Stoltz, Org. Lett. 2010, 12, 1612.
19.9 ppm. IR (CH Cl ): ν = 2976, 2937, 2842, 2256, 1722, 1601,
˜
2
2
1463, 1430, 1365, 1293, 1251, 1205, 1156, 1064, 916, 845, 733 cm–1.
HRMS (EI): calcd. for C22H32O7 [M+] 408.2158; found 408.2161.
3312
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 3303–3313