ChemComm
Communication
(973 Program; 2013CB834704), the National Science Founda-
tion of China (51073026, 51061160500 and 21074011) and the
Major Project Seed Research Program of Beijing Institute of
Technology (Grant No. 2012CX01008).
Notes and references
1 (a) Y. Sagara and T. Kato, Nat. Chem., 2009, 1, 605; (b) D. A. Davis,
A. Hamilton, J. L. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek,
M. T. Ong, P. V. Braun, T. J. Martinez, S. R. White, J. S. Moore and
N. R. Sottos, Nature, 2009, 459, 68; (c) Y. J. Dong, B. Xu, J. B. Zhang,
X. Tan, L. J. Wang, J. L. Chen, H. G. Lv, S. P. Wen, B. Li, L. Ye, B. Zou
and W. J. Tian, Angew. Chem., Int. Ed., 2012, 51, 10782; (d) X. L. Luo,
J. N. Li, C. H. Li, L. P. Heng, Y. Q. Dong, Z. P. Liu, Z. S. Bo and
B. Z. Tang, Adv. Mater., 2011, 23, 3261.
Fig. 4 Illustration of H-bonding interactions (O–Hꢀ ꢀ ꢀO and C–Hꢀ ꢀ ꢀp) in the
TABD–COOH single crystal.
2 (a) Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu and J. Xu,
Chem. Soc. Rev., 2012, 41, 3878; (b) D. P. Yan, J. Lu, J. Ma, S. H. Qin,
M. Wei, D. G. Evans and X. Duan, Angew. Chem., Int. Ed., 2011,
50, 7037; (c) Y. Sagara, T. Mutai, I. Yoshikawa and K. Araki, J. Am.
Chem. Soc., 2007, 129, 1520.
3 (a) Y. Sagara and T. Kato, Angew. Chem., Int. Ed., 2008, 47, 5175;
(b) Y. Sagara and T. Kato, Angew. Chem., Int. Ed., 2011, 50, 9128;
(c) S. J. Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M. G. Choi, D. Kim
and S. Y. Park, J. Am. Chem. Soc., 2010, 132, 13675; (d) G. Q. Zhang,
J. W. Lu, M. Sabat and C. L. Fraser, J. Am. Chem. Soc., 2010, 132, 2160;
(e) Z. L. Zhang, D. D. Yao, T. L. Zhou, H. Y. Zhang and Y. Wang, Chem.
Commun., 2011, 47, 7782; ( f ) Y. Sagara, S. Yamane, T. Mutai, K. Araki
and T. Kato, Adv. Funct. Mater., 2009, 19, 1869; (g) M. S. Kwon,
J. Gierschner, S. J. Yoon and S. Y. Park, Adv. Mater., 2012, 24, 5487;
(h) Y. Wang, W. Liu, L. Bu, J. Li, M. Zheng, D. Zhang, M. Sun, Y. Tao,
S. Xue and W. Yang, J. Mater. Chem. C, 2013, 1, 856.
4 (a) A. L. Balch, Angew. Chem., Int. Ed., 2009, 48, 2641; (b) H. Ito, T. Saito,
N. Oshima, N. Kitamura, S. Ishizaka, Y. Hinatsu, M. Wakeshima,
M. Kato, K. Tsuge and M. Sawamura, J. Am. Chem. Soc., 2008, 130,
10044; (c) S. Perruchas, X. F. Le Goff, S. Maron, I. Maurin, F. Guillen,
A. Garcia, T. Gacoin and J. P. Boilot, J. Am. Chem. Soc., 2010, 132, 10967;
(d) G. G. Shan, H. B. Li, H. T. Cao, D. X. Zhu, P. Li, Z. M. Su and Y. Liao,
Chem. Commun., 2012, 48, 2000; (e) G. G. Shan, H. B. Li, D. X. Zhu,
Z. M. Su and Y. Liao, J. Mater. Chem., 2012, 22, 12736.
5 (a) W. E. Lee, C. L. Lee, T. Sakaguchi, M. Fujiki and G. Kwak, Chem.
Commun., 2011, 47, 3526; (b) J. Kunzelman, M. Kinami, B. R. Crenshaw,
J. D. Protasiewicz and C. Weder, Adv. Mater., 2008, 20, 119;
(c) B. M. McKenzie, R. J. Wojtecki, K. A. Burke, C. Y. Zhang,
A. Jakli, P. T. Mather and S. J. Rowan, Chem. Mater., 2011, 23, 3525.
6 J. D. Luo, Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu,
H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu and B. Z. Tang, Chem.
Commun., 2001, 1740.
7 (a) Y. N. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011,
40, 5361; (b) Y. Liu, C. M. Deng, L. Tang, A. J. Qin, R. R. Hu, J. Z. Sun and
B. Z. Tang, J. Am. Chem. Soc., 2011, 133, 660; (c) H. B. Shi, J. Z. Liu,
J. L. Geng, B. Z. Tang and B. Liu, J. Am. Chem. Soc., 2012, 134, 9569;
(d) J. Wang, J. Mei, R. R. Hu, J. Z. Sun, A. J. Qin and B. Z. Tang, J. Am. Chem.
Soc., 2012, 134, 9956; (e) Y. N. Hong, L. M. Meng, S. J. Chen, C. W. T.
Leung, L. T. Da, M. Faisal, D. A. Silva, J. Z. Liu, J. W. Y. Lam, X. H. Huang
and B. Z. Tang, J. Am. Chem. Soc., 2012, 134, 1680; ( f ) A. Perez, J. L.
Serrano, T. Sierra, A. Ballesteros, D. de Saa and J. Barluenga, J. Am. Chem.
Soc., 2011, 133, 8110; (g) S. J. Yoon, J. H. Kim, K. S. Kim, J. W. Chung,
B. Heinrich, F. Mathevet, P. Kim, B. Donnio, A. J. Attias, D. Kim and
S. Y. Park, Adv. Funct. Mater., 2012, 22, 61; (h) X. Y. Shi, H. Wang, T. Y. Han,
X. Feng, B. Tong, J. B. Shi, J. G. Zhi and Y. P. Dong, J. Mater. Chem., 2012,
22, 19296; (i) T. Y. Han, X. Feng, B. Tong, J. B. Shi, L. Chen, J. G. Zhi and
Y. P. Dong, Chem. Commun., 2012, 48, 416.
8 (a) Y. H. Xu, L. Chen, Z. Q. Guo, A. Nagai and D. L. Jiang, J. Am. Chem.
Soc., 2011, 133, 17622; (b) X. Feng, B. Tong, J. B. Shen, J. B. Shi,
T. Y. Han, L. Chen, J. G. Zhi, P. Lu, Y. G. Ma and Y. P. Dong, J. Phys.
Chem. B, 2010, 114, 16731; (c) J. Z. Liu, H. M. Su, L. M. Meng,
Y. H. Zhao, C. M. Deng, J. C. Y. Ng, P. Lu, M. Faisal, J. W. Y. Lam,
X. H. Huang, H. K. Wu, K. S. Wong and B. Z. Tang, Chem. Sci., 2012,
3, 2737; (d) J. Liu, Q. Meng, X. T. Zhang, X. Q. Lu, P. He, L. Jiang,
H. L. Dong and W. P. Hu, Chem. Commun., 2013, 49, 1199;
(e) Z. J. Zhao, P. Lu, J. W. Y. Lam, Z. M. Wang, C. Y. K. Chan, H. H. Y.
Sung, I. D. Williams, Y. G. Ma and B. Z. Tang, Chem. Sci., 2011, 2, 672;
( f ) N. W. Tseng, J. Z. Liu, J. C. Y. Ng, J. W. Y. Lam, H. H. Y. Sung,
I. D. Williams and B. Z. Tang, Chem. Sci., 2012, 3, 493.
and THF and C–Hꢀ ꢀ ꢀp interactions between two adjacent
TABD–COOH molecules. With the aid of all of these H-bonding
interactions, the free rotation of s bonds was obstructed and
the close p–p interactions were avoided.
The PXRD pattern of the F-form solid showed clear reflec-
tion peaks, which suggested the formation of ordered structure.
It should be noted that this pattern is not similar to the
diffraction data simulated from single crystal structure. This is
because unlike the single crystal structure, for the F-form solid,
dimeric and even ‘‘polymeric’’ structures could be formed due to
strong H-bonding interactions between carboxylic acid groups in
two adjacent TABD–COOH molecules. On the other hand, the
PXRD intensity of the G-form solid was strongly weakened
(Fig. S6, ESI†), which is an indication of partial deformation of
the ordered structure. Meanwhile, although the heating profile
of the F-form solid showed no peak up to 250 1C, two clear
exothermic peaks at 133 and 151 1C were observed only in the
first heating curve of the G-form solid (Fig. S7, ESI†). These two
peaks were supposed to contribute to crystallization and crystal
transformation temperatures, respectively. It is observed that
after annealing, the sample can also convert to its original color
due to the formation of highly ordered structures (Fig. S6, ESI†).
Thus, these results confirmed the piezochromic nature of
the TABD–COOH solid. It originated from the changes in the
molecular packing. That is, the molecular arrangement in the
F-form solid is overridden by H-bonding interactions. Applying
high pressure can destroy these interactions and lead to the
formation of the G-form solid, where close packing governs the
molecular packing. Furthermore, the permeation of vapors of
polar solvents into the powder or film promotes the regeneration
of H-bonds and the rearrangement of TABD–COOH molecules
from the G-form state to the F-form state.
In summary, we have demonstrated AIE features and rever-
sible piezochromic behavior of TABD–COOH, which was easily
prepared symmetrically with high stereoselectivity. The photo-
luminescent color of TABD–COOH can be altered upon gentle
grinding and simply recovered upon exposure to solvents
within 1 s. It is shown to be effective in introducing both the
AIE core and hydrogen bonding sites for the design of piezo-
chromic material with high fluorescence quantum yield in the
solid state.
The work reported in this communication was partially
supported by the National Basic Research Program of China
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 7049--7051 7051