Inorganic Chemistry
Article
compounds. Organometallics 2013, 32, 1807−1814. (l) Hung, F.-F.;
To, W.-P.; Zhang, J.-J.; Ma, C.; Wong, W.-Y.; Che, C.-M. Water-
soluble luminescent cyclometalated gold(III) complexes with cis-
chelating bis(N-heterocyclic carbene) ligands: synthesis and photo-
physical properties. Chem. - Eur. J. 2014, 20, 8604−8614.
(m) Szentkuti, A.; Bachmann, M.; Garg, J. A.; Blacque, O.;
Venkatesan, K. Monocyclometalated gold(III) monoaryl complexes
− a new class of triplet phosphors with highly tunable and efficient
emission properties. Chem. - Eur. J. 2014, 20, 2585−2596. (n) David,
B.; Monkowius, U.; Rust, J.; Lehmann, C. W.; Hyzak, L.; Mohr, F.
Gold(III) compounds containing a chelating, dicarbanionic ligand
derived from 4,4′-di-tert-butylbiphenyl. Dalton Trans. 2014, 43,
W.-W. Bipolar gold(III) complexes for solution-processable organic
light-emitting devices with a small efficiency roll-off. J. Am. Chem. Soc.
2014, 136, 17861−17868.
(9) (a) Zehnder, T. N.; Blacque, O.; Venkatesan, K. Luminescent
monocyclometalated cationic gold(III) complexes: synthesis, photo-
physical characterization and catalytic investigations. Dalton Trans.
2014, 43, 11959−11972. (b) Xue, Q.; Xie, J.; Jin, H.; Cheng, Y.; Zhu,
C. Highly efficient visible-light-induced aerobic oxidative C−C, C−P
coupling from C−H bonds catalyzed by a gold(III)-complex. Org.
Biomol. Chem. 2013, 11, 1606−1609. (c) Yu, Z.-T.; Liu, X.-L.; Yuan,
Y.-J.; Li, Y.-H.; Chen, G.-H.; Zou, Z.-G. Evaluation of bis-cyclo-
metalated alkynylgold(III) sensitizers for water photoreduction to
hydrogen. Dalton Trans. 2016, 45, 17223−17232.
11059−11066. (o) Rosç a, D.-A.; Fernandez-Cestau, J.; Romanov, A.
S.; Bochmann, M. Synthesis, C−N cleavage and photoluminescence of
gold(III) isocyanide complexes. J. Organomet. Chem. 2015, 792, 117−
122. (p) Browne, A. R.; Deligonul, N.; Anderson, B. L.; Zeller, M.;
Hunter, A. D.; Gray, T. G. Cyclometalated (boroxinato)gold(III)
complexes from arrested transmetalation. Chem. Commun. 2015, 51,
(10) Venugopal, A.; Shaw, A. P.; Tornroos, K. W.; Heyn, R. H.;
̈
Tilset, M. Synthesis of a coordinately labile gold(III) methyl complex.
Organometallics 2011, 30, 3250−3253.
(11) Williams, J. A. G.; Beeby, A.; Davies, E. S.; Weinstein, J. A.;
Wilson, C. An alternative route to highly luminescent platinum(II)
́ ́
15800−15803. (q) Fernandez-Moreira, V.; Camara, J.; Smirnova, E. S.;
̂
̂
complexes: cyclometalation with NCN-coordinating dipyridylbenzene
ligands. Inorg. Chem. 2003, 42, 8609−8611.
Koshevoy, I. O.; Laguna, A.; Tunik, S. P.; Blanco, M. C.; Gimeno, M.
C. Tuning the energy emission from violet to yellow with bidentate
phosphine gold(III) complexes. Organometallics 2016, 35, 1141−1150.
(r) Nilakantan, L.; McMillin, D. R.; Sharp, P. R. Emissive biphenyl
cyclometalated gold(III) diethyl dithiocarbamate complexes. Organo-
metallics 2016, 35, 2339−2347. (s) Currie, L.; Fernandez-Cestau, J.;
Rocchigiani, L.; Bertrand, B.; Lancaster, S. J.; Hughes, D. L.;
Duckworth, H.; Jones, S. T. E.; Credgington, D.; Penford, T. J.;
Bochmann, M. Luminescent gold(III) thiolates: supramolecular
interactions trigger and control switchable photoemissions from
bimolecular excited states. Chem. - Eur. J. 2017, 23, 105−113.
(3) Tong, G. S. M.; Chan, K. T.; Chang, X.; Che, C.-M. Theoretical
studies on the photophysical properties of luminescent pincer
gold(III) arylacetylide complexes: the role of π−conjugation at the
C-deprotonated [C∧N∧C] ligand. Chem. Sci. 2015, 6, 3026−3037.
(4) (a) Lu, W.; Chan, K. T.; Wu, S.-X.; Chen, Y.; Che, C.-M. Quest
for an intermolecular Au(III)•••Au(III) interaction between cyclo-
metalated gold(III) cations. Chem. Sci. 2012, 3, 752−755. (b) Zhang,
J.-J.; Lu, W.; Sun, R. W.-Y.; Che, C.-M. Organogold(III) supra-
molecular polymers for anticancer treatment. Angew. Chem., Int. Ed.
2012, 51, 4882−4886. (c) Au, V. K.-M.; Zhu, N.; Yam, V. W.-W.
Luminescent metallogels of bis-cyclometalated alkynylgold(III)
complexes. Inorg. Chem. 2013, 52, 558−567. (d) Xiao, X.-S.; Kwong,
W.-L.; Guan, X.; Yang, C.; Lu, W.; Che, C.-M. Platinum(II) and
gold(III) allenylidene complexes: phosphorescence, self-assembled
nanostructures and cytotoxicity. Chem. - Eur. J. 2013, 19, 9457−9462.
(e) Yim, K.-C.; Lam, E. S.-H.; Wong, K. M.-C.; Au, V. K.-M.; Ko, C.-
C.; Lam, W. H.; Yam, V. W.-W. Synthesis, characterization, self-
assembly, gelation, morphology and computational studies of
alkynylgold(III) complexes of 2,6-bis(benzimidazol-2′-yl)pyridine
derivatives. Chem. - Eur. J. 2014, 20, 9930−9939.
(12) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light
photoredox catalysis with transition metal complexes: applications in
organic synthesis. Chem. Rev. 2013, 113, 5322−5363.
(13) Krohnke, F. The specific synthesis of pyridines and
̈
oligopyridines. Synthesis 1976, 1976, 1−24.
(14) Wilkinson, A. J.; Puschmann, H.; Howard, J. A. K.; Foster, C. E.;
Williams, J. A. G. Luminescent complexes of iridium(III) containing
̂
̂
NCN-coordinating terdentate ligands. Inorg. Chem. 2006, 45, 8685−
8699.
(15) Liu, Z.; Yao, Y.; Kogiso, M.; Zheng, B.; Deng, L.; Qiu, J. J.;
Dong, S.; Lv, H.; Gallo, J. M.; Li, X.-N.; Song, Y. Inhibition of cancer-
associated mutant isocitrate dehydrogenases: synthesis, structure-
activity relationship, and selective antitumor activity. J. Med. Chem.
2014, 57, 8307−8318.
(16) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr.,
Sect. A: Found. Crystallogr. 2008, 64, 112−122.
(17) Adamo, C.; Barone, V. Toward reliable density functional
methods without adjustable parameters: the PBE0 model. J. Chem.
Phys. 1999, 110, 6158−6169.
(18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
(5) Cui, X.; Zhao, J.; Mohmood, Z.; Zhang, C. Accessing the long-
lived triplet excited states in transition-metal complexes: molecular
design rationales and applications. Chem. Rec. 2016, 16, 173−188.
(6) Rueping, M.; Zhu, S.; Koenigs, R. M. Visible-light photoredox
catalyzed oxidative Strecker reaction. Chem. Commun. 2011, 47,
12709−12711.
̈
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
Revision D.01; Gaussian, Inc., Wallingford, CT, 2009.
(19) (a) Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J. S.;
Gordon, M. S.; DeFree, D. J.; Pople, J. A. Self-consistent molecular
orbital methods. XXIII. A polarization-type basis set for second-row
elements. J. Chem. Phys. 1982, 77, 3654−3665. (b) Hariharan, P. C.;
Pople, J. A. The influence of polarization functions on molecular
orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213−222.
(20) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.
Energy-adjusted ab initio pseudopotentials for the second and third
row transition elements. Theor. Chim. Acta 1990, 77, 123−141.
(b) Martin, J. M. L.; Sundermann, A. Correlation consistent valence
basis sets for use with the Stuttgart−Dresden−Bonn relativistic
effective core potentials: the atoms Ga−Kr and In−Xe. J. Chem. Phys.
2001, 114, 3408−3420.
(7) Sun, C.-Y.; To, W.-P.; Wang, X.-L.; Chan, K.-T.; Su, Z.-M.; Che,
C.-M. Metal-organic framework composites with luminescent gold-
(III) complexes. Strongly emissive and long-lived excited states in
open air and photo-catalysis. Chem. Sci. 2015, 6, 7105−7111.
(8) (a) Au, V. K.-M.; Wong, K. M.-C.; Tsang, D. P.-K.; Chan, M.-Y.;
Zhu, N.; Yam, V W.-W. High-efficiency green organic light-emitting
devices utilizing phosphorescent bis-cyclometalated alkynylgold(III)
complexes. J. Am. Chem. Soc. 2010, 132, 14273−14278. (b) Cheng, G.;
Chan, K. T.; To, W.-P.; Che, C.-M. Color tunable organic light-
emitting devices with external quantum efficiency over 20% based on
strongly luminescent gold(III) complexes having long-lived emissive
excited states. Adv. Mater. 2014, 26, 2540−2546. (c) Tang, M.-C.;
Tsang, D. P.-K.; Wong, Y.-C.; Chan, M.-Y.; Wong, K. M.-C.; Yam, V.
M
Inorg. Chem. XXXX, XXX, XXX−XXX