Journal of Medicinal Chemistry
Article
(6) (a) Fuchs, S. Y. The role of ubiquitin−proteasome pathway in
oncogenic signaling. Cancer Biol. Ther. 2002, 1, 337−341. (b) Chen, J. J.;
Lin, F.; Qin, Z. H. The roles of the proteasome pathway in signal
transduction and neurodegenerative diseases. Neurosci. Bull. 2008, 24,
183−194.
(7) (a) Vembar, S. S.; Brodsky, J. L. One step at a time: endoplasmic
reticulum-associated degradation. Nature Rev. Mol. Cell Biol. 2008, 9,
944−957. (b) Ron, D.; Walter, P. Signal integration in the endoplasmic
reticulum unfolded protein response. Nature Rev. Mol. Cell Biol. 2007, 8,
519−529. (c) Hiller, M. M.; Finger, A.; Schweiger, M.; Wolf, D. H. ER
degradation of a misfolded luminal protein by the cytosolic ubiquitin−
proteasome pathway. Science 1996, 273, 1725−1728.
(8) (a) Paramore, A.; Frantz, S. Bortezomib. Nature Rev. Drug Discovery
2003, 2, 611−612. (b) Bross, P. F.; Kane, R.; Farrell, A. T.; Abraham, S.;
Benson, K.; Brower, M. E.; Bradley, S.; Gobburu, J. V.; Goheer, A.; Lee,
S. L.; Leighton, J.; Liang, C. Y.; Lostritto, R. T.; McGuinn, W. D.; Morse,
D. E.; Rahman, A.; Rosario, L. A.; Verbois, S. L.; Williams, G.; Wang, Y.
C.; Pazdur, R. Approval summary for bortezomib for injection in the
treatment of multiple myeloma. Clin. Cancer Res. 2004, 10, 3954−3964.
(c) Kane, R. C.; Farrell, A. T.; Sridhara, R.; Pazdur, R. United States
Food and Drug Administration approval summary: bortezomib for the
treatment of progressive multiple myeloma after one prior therapy. Clin.
Cancer Res. 2006, 12, 2955−2960. (d) Abraham, J. Carfilzomib and
bortezomib therapy in patients with multiple myeloma. Community
Oncol. 2012, 9, 278−282.
(9) (a) Asai, A.; Hasegawa, A.; Ochiai, K.; Yamashita, Y.; Mizukami, T.
Belactosin A, a novel antitumor antibiotic acting on cyclin/CDK
mediated cell cycle regulation, produced by Streptomyces sp. J. Antibiot.
2000, 53, 81−83. (b) Asai, A.; Tsujita, T.; Sharma, S. V.; Yamashita, Y.;
Akinaga, S.; Funakoshi, M.; Kobayashi, H.; Mizukami, T. A new
structural class of proteasome inhibitors identified by microbial
screening using yeast-based assay. Biochem. Pharmacol. 2004, 67,
227−234.
(10) Groll, M.; Larionov, O. V.; Huber, R.; De Meijere, A. Inhibitor-
binding mode of homobelactosin C to proteasomes: new insights into
class I MHC ligand generation. Proc. Natl. Acad. Sci. U. S. A. 2006, 103,
4576−4579.
(11) Yoshida, K.; Yamaguchi, K.; Sone, T.; Unno, Y.; Asai, A.;
Yokosawa, H.; Matsuda, A.; Arisawa, M.; Shuto, S. Synthesis of 2,3- and
3,4-methanoamino acid equivalents with stereochemical diversity and
their conversion into the tripeptide proteasome inhibitor belactosin a
and its highly potent cis-cyclopropane stereoisomer. Org. Lett. 2008, 10,
3571−3574.
(12) (a) Yoshida, K.; Yamaguchi, K.; Mizuno, A.; Unno, Y.; Asai, A.;
Sone, T.; Yokosawa, H.; Matsuda, A.; Arisawa, M.; Shuto, S. Three-
dimensional structure−activity relationship study of belactosin A and its
stereo- and regioisomers: development of potent proteasome inhibitors
by a stereochemical diversity-oriented strategy. Org. Biomol. Chem.
2009, 7, 1868−1877. (b) Kawamura, S.; Unno, Y.; List, A.; Mizuno, A.;
Tanaka, M.; Sasaki, T.; Arisawa, M.; Asai, A.; Groll, M.; Shuto, S. Potent
Proteasome Inhibitors Derived from the Unnatural cis-Cyclopropane
Isomer of Belactosin A: Synthesis, Biological Activity, and Mode of
Action. J. Med. Chem. 2013, 56, 3689−3700.
(13) (a) Parthasarathy, S.; Murthy, M. Protein thermal stability:
insights from atomic displacement parameters (B values). Protein Eng.
2000, 13, 9−13. (b) Yuan, Z.; Zhao, J.; Wang, Z.-X. Flexibility analysis of
enzyme active sites by crystallographic temperature factors. Protein Eng.
2003, 16, 109−114. (c) Radivojac, P.; Obradovic, Z.; Smith, D. K.; Zhu,
G.; Vucetic, S.; Brown, C. J.; Lawson, J. D.; Dunker, A. K. Protein
flexibility and intrinsic disorder. Protein Sci. 2009, 13, 71−80.
(14) (a) Kozikowski, A. P. Drug Design for Neuroscience; Raven Press:
New York, 1993; (b) Silverman, R. B. The Organic Chemistry of Drug
Design and Drug Action; Academic Press: New York, 2004. (c) Wermuth,
C. G. The Practice of Medicinal Chemistry; Academic Press: New York,
2008.
R. D.; Jewsbury, P. J.; Essex, J. W. A review of protein−small molecule
docking methods. J. Comput.-Aided Mol. Des. 2002, 16, 151−166.
(16) (a) Armstrong, P. D.; Cannon, J. G.; Long, J. P. Conformationally
Rigid Analogues of Acetylcholine. Nature 1968, 220, 65−66. (b) Kazuta,
Y.; Hirano, K.; Natsume, K.; Yamada, S.; Kimura, R.; Matsumoto, S.;
Furuichi, K.; Matsuda, A.; Shuto, S. Cyclopropane-based conforma-
tional restriction of histamine. (1S,2S)-2-(2-aminoethyl)-1-(1H-imida-
zol-4-yl)cyclopropane, a highly selective agonist for the histamine H3
receptor, having a cis-cyclopropane structure. J. Med. Chem. 2003, 46,
1980−1988. (c) Watanabe, M.; Kazuta, Y.; Hayashi, H.; Yamada, S.;
Matsuda, A.; Shuto, S. Stereochemical diversity-oriented conformational
restriction strategy. Development of potent histamine H3 and/or H4
receptor antagonists with an imidazolylcyclopropane structure. J. Med.
Chem. 2006, 49, 5587−5596. (d) Watanabe, M.; Kobayashi, T.;
Hirokawa, T.; Yoshida, A.; Ito, Y.; Yamada, S.; Orimoto, N.; Yamasaki,
Y.; Arisawa, M.; Shuto, S. Cyclopropane-based stereochemical diversity-
oriented conformational restriction strategy: histamine H3 and/or H4
receptor ligands with the 2,3-methanobutane backbone. Org. Biomol.
Chem. 2012, 10, 736−745.
(17) (a) Shuto, S.; Ono, S.; Hase, Y.; Kamiyama, N.; Takada, H.;
Yamasihita, K.; Matsuda, A. Conformational restriction by repulsion
between adjacent substituents on a cyclopropane ring: Design and
enantioselective synthesis of 1-phenyl-2-(1-aminoalkyl)-N,N-diethylcy-
clopropanecarboxamide as potent NMDA receptor antagonists. J. Org.
Chem. 1996, 61, 915−923. (b) Shuto, S.; Ono, S.; Hase, Y.; Ueno, Y.;
Noguchi, T.; Yoshii, K.; Matsuda, A. Synthesis and biological activity of
conformationally restricted analogs of milnacipran: (1S,2R)-1-phenyl-2-
[(S)-1-aminopropyl]-N,N-diethylcyclopropanecarboxamide, an effi-
cient noncompetitive N-methyl-D-aspartic acid receptor antagonist. J.
Med. Chem. 1996, 39, 4844−4852. (c) Shuto, S.; Ono, S.; Imoto, H.;
Yoshii, K.; Matsuda, A. Synthesis and biological activity of conforma-
tionally restricted analogues of milnacipran: (1S,2R)-1-phenyl-2-[(R)-1-
amino-2-propynyl]-N,N-diethylcyclopropanecarboxamide is a novel
class of NMDA receptor channel blocker. J. Med. Chem. 1998, 41,
3507−3514. (d) Ono, S.; Ogawa, K.; Yamashita, K.; Yamamoto, T.;
Kazuta, Y.; Matsuda, A.; Shuto, S. Conformational analysis of the
NMDA receptor antagonist (1S,2R)-1-phenyl-2-[(S)-1-aminopropyl]-
N,N-diethylcyclopropanecarboxamide (PPDC) designed by a novel
conformational restriction method based on the structural feature of
cyclopropane ring. Chem. Pharm. Bull. 2002, 50, 966−968. (e) Yama-
guchi, K.; Kazuta, Y.; Hirano, K.; Yamada, S.; Matsuda, A.; Shuto, S.
Synthesis of 1-arylpiperazyl-2-phenylcyclopropanes designed as anti-
dopaminergic agents: cyclopropane-based conformationally restricted
analogs of haloperidol. Bioorg. Med. Chem. 2008, 16, 8875−8881.
(f) Watanabe, M.; Hirokawa, T.; Kobayashi, T.; Yoshida, A.; Ito, Y.;
Yamada, S.; Orimoto, N.; Yamasaki, Y.; Arisawa, M.; Shuto, S.
Investigation of the bioactive conformation of histamine H3 receptor
antagonists by the cyclopropylic strain-based conformational restriction
strategy. J. Med. Chem. 2010, 53, 3585−3593.
(18) Groll, M.; McArthur, K. A.; Macherla, V. R.; Manam, R. R.; Potts,
B. C. Snapshots of the fluorosalinosporamide/20S complex offer
mechanistic insights for fine tuning proteasome inhibition. J. Med. Chem.
2009, 52, 5420−5428.
(19) (a) Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.;
Jensen, P. R.; Fenical, W. Salinosporamide A: a highly cytotoxic
proteasome inhibitor from a novel microbial source, a marine bacterium
of the new genus salinospora. Angew. Chem., Int. Ed. Engl. 2003, 42,
355−357. (b) Macherla, V. R.; Mitchell, S. S.; Manam, R. R.; Reed, K. A.;
Chao, T. H.; Nicholson, B.; Deyanat-Yazdi, G.; Mai, B.; Jensen, P. R.;
Fenical, W. F.; Neuteboom, S. T.; Lam, K. S.; Palladino, M. A.; Potts, B.
C. Structure−activity relationship studies of salinosporamide A (NPI-
0052), a novel marine derived proteasome inhibitor. J. Med. Chem. 2005,
48, 3684−3687. (c) Groll, M.; Huber, R.; Potts, B. C. M. Crystal
structures of salinosporamide A (NPI-0052) and B (NPI-0047) in
complex with the 20S proteasome reveal important consequences of
beta-lactone ring opening and a mechanism for irreversible binding. J.
Am. Chem. Soc. 2006, 128, 5136−5141.
(15) (a) Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking
and scoring in virtual screening for drug discovery: methods and
applications. Nature Rev. Drug Discovery 2004, 3, 935−949. (b) Taylor,
(20) In the docking simulation using the native proteasome structure
with positional constraint of β-lactone moiety, no pose was obtained,
5841
dx.doi.org/10.1021/jm400542h | J. Med. Chem. 2013, 56, 5829−5842