ChemComm
Communication
Table 2 Preparation of chiral a-alkyl-a-hydroxy-b-ketoesters 4 by methanolysis
of 3a
Colorless oil; 97% ee [HPLC analysis of its phenylhydrazone
derivative (flow rate: 0.50 ml minꢁ1, solvent: hexane–2-propanol =
95 : 5), tR (racemic) = 13.29 min and 15.69 min, tR (4b) = (13.31 min)];
[a]2D3 + 38.2 (c 1.03, CHCl3); 1H NMR (300 MHz, CDCl3) d 0.89 (t, 3H,
J = 6.9 Hz), 0.90 (t, 3H, J = 6.9 Hz), 1.12–1.40 (m, 8H), 1.59 (quint, 2H,
J = 7.2 Hz), 1.90 (ddd, 1H, J = 5.2, 10.7 Hz, Jgem = 14.1 Hz), 2.09
(ddd, 1H, J = 4.8, 11.4 Hz, Jgem = 14.1 Hz), 2.51 (dt, 1H, J = 7.2 Hz,
Jgem = 17.9 Hz), 2.69 (dt, 1H, J = 7.6 Hz, Jgem = 17.9 Hz), 3.79 (s, 3H),
4.04–4.35 (br, 1H); 13C NMR (75 MHz, CDCl3) d 13.84, 22.35, 22.66,
23.15, 25.24, 31.13, 35.14, 36.65, 53.19, 84.21, 171.61, 207.29; IR
(neat) 3484, 2959, 2934, 1721, 1262, 1221 cmꢁ1; HRMS (ESI) calcd for
C13H24O4 (M + Na+) 267.1572, found 267.1579.
Entry Substrate R1
R2
Product Yieldb/% eec/%
1
2
3a
3b
Me 4a
Bu 4b
81
82
96
97d
3
4
3c
3d
Me 4c
Bu 4d
81
82
92
92d
5
6
3e
3f
Me 4e
Bu 4f
89
78
96
93
Notes and references
7
8
3g
3h
Me 4g
Bu 4h
69
69
98
86
´
1 (a) D. Seebach and R. Naef, Helv. Chim. Acta, 1981, 64, 2704; (b) G. Frater,
U. Mu¨ller and W. Gu¨nther, Tetrahedron Lett., 1981, 22, 4221; (c) Review:
D. Seebach, A. R. Sting and M. Hoffmann, Angew. Chem., Int. Ed. Engl.,
1996, 35, 2708; (d) A recent example among many applications:
9
10
3i
3j
Me 4i
Bu 4j
88
85
91
92
´
A. Larivee, J. B. Unger, M. Thomas, C. Wirtz, C. Dubost, S. Handa and
a
b
c
ca. 80% of 10 were recovered. Isolated. Determined by HPLC
A. Fu¨rstner, Angew. Chem., Int. Ed., 2011, 50, 304; (e) Facile and robust
preparations: T. Misaki, S. Ureshino, R. Nagase, Y. Oguni and Y. Tanabe,
Org. Process Res. Dev., 2006, 10, 500; ( f ) R. Nagase, Y. Oguni, T. Misaki
and Y. Tanabe, Synthesis, 2006, 3915.
d
analyses of the benzoyl ester derivative unless otherwise noted. Deter-
mined by HPLC analyses of the phenylhydrazone derivatives.
¨
2 (a) U. Schoellkopf, W. Hartwig and U. Groth, Angew. Chem., Int. Ed.
produces less accessible chiral building blocks, a-alkyl-a-hydroxy-b-
ketoesters, utilizing chiral templates, 3-methyl-3-phenyl-1,4-dioxane-
2,5-diones. The present strategy was successfully applied to achieve
concise asymmetric total synthesis of chiral alternaric acid.
Engl., 1979, 91, 922. Recent examples: (b) Y. Chen, Y. Wu,
P. Henklein, X. Li, K. P. Hofmann, K. Nakanishi and O. P. Ernst,
Chem.ꢁEur. J., 2010, 16, 7389; (c) W. Li, W. Ye and S. W. Schneller,
Tetrahedron, 2012, 68, 65.
3 (a) R. M. Williams and M. N. Im, J. Am. Chem. Soc., 1991, 113, 9276;
(b) Recent examples: C. Song, S. Tapaneeyakorn, A. C. Murphy, C. Butts,
A. Watts and C. L. Willis, J. Org. Chem., 2009, 74, 8980; (c) B. Hill,
V. Ahmed, D. Bates and S. D. Taylor, J. Org. Chem., 2006, 71, 8190.
4 (a) B. Strijtveen and R. M. Kellogg, Tetrahedron, 1987, 43, 5039;
(b) R. P. Hof and R. M. Kellogg, J. Chem. Soc., Perkin Trans. 1, 1995,
1247; (c) Y. Tanabe, H. Yamamoto, M. Murakami, K. Yanagi,
Y. Kubota, H. Okumura, Y. Sanemitsu and G. Suzukamo, J. Chem.
Soc., Perkin Trans. 1, 1995, 935.
The typical procedure of Table 1 (entry 2): hexanoyl chloride (94 mg,
0.70 mmol) was added to a stirred solution of (3S)-6-butyl-3-methyl-3-
phenyl-1,4-dioxane-2,5-dione7 (131 mg, 0.50 mmol) and 2-ethyl-1-methy-
limidazole (77 mg, 0.70 mmol) in CH2Cl2 (1.0 ml) at ꢁ50 to ꢁ45 1C
under an Ar atmosphere, followed by stirring at the same temperature
for 10 min. TiCl4 (138 mL, 1.25 mmol) and Bu3N (278 mg, 1.50 mmol)
were successively added to the mixture, which was stirred at the same
temperature for 0.5 h. The mixture was quenched with water, which
was extracted twice with Et2O. The combined organic phase was
washed with water, brine, dried (Na2SO4) and concentrated. The
obtained crude oil was purified by SiO2-column chromatography
(hexane : AcOEt = 30 : 1) to give (3R,6S)-3-butyl-3-hexanoyl-6-methyl-6-
phenyl-1,4-dioxane-2,5-dione (3b; 129 mg, 72%).
5 (a) M. B. Smith and J. March, Advanced Organic Chemistry, Wiley,
New York, 6th edn, 2007, p. 1335 and 1452; (b) L. Ku¨rti and B. Czako,
´
Strategic Applications of Named Reactions in Organic Synthesis, Else-
vier, Burlington, 2005, p. 86 and 138; (c) G. Zhou, D. Lim, F. Fang
and D. M. Coltart, Synthesis, 2009, 3350; (d) Selected recent progress;
Y. Nishimoto, A. Okita, M. Yasuda and A. Baba, Angew. Chem., Int.
Ed., 2011, 50, 8623.
6 (a) Y. Tanabe, Bull. Chem. Soc. Jpn., 1989, 62, 1917; (b) S. N. Crane
and E. J. Corey, Org. Lett., 2001, 3, 1395; (c) T. Misaki, R. Nagase,
K. Matsumoto and Y. Tanabe, J. Am. Chem. Soc., 2005, 127, 2854;
(d) A. Iida, S. Nakazawa, T. Okabayashi, A. Horii, T. Misaki and
Y. Tanabe, Org. Lett., 2006, 8, 5215; (e) Related Mannich reaction;
T. Funatomi, S. Nakazawa, K. Matsumoto, R. Nagase and Y. Tanabe,
Chem. Commun., 2008, 771.
7 R. Nagase, Y. Iida, M. Sugi, T. Misaki and Y. Tanabe, Synthesis, 2008, 3670.
8 P. W. Brian, P. J. Curtis, H. G. Hemming, C. H. Unwin and J. M. Wright,
Nature, 1949, 164, 534.
9 (a) H. Tabuchi and A. Ichihara, J. Chem. Soc., Perkin Trans. 1, 1994,
125; (b) H. Tabuchi, T. Hamamoto, S. Miki, T. Tejima and A. Ichihara,
J. Org. Chem., 1994, 59, 4749.
Colorless oil; [a]2D5 + 22.8 (c 1.04, CHCl3); 1H NMR (300 MHz,
CDCl3) d 0.73 (3H, t, J = 6.5 Hz), 0.90 (3H, t, J = 6.9 Hz), 1.04–1.38
(8H, m), 1.57–1.69 (2H, m), 1.72–1.84 (1H, m), 1.89–2.02 (1H,
m), 1.98 (3H, s), 2.56 (1H, dt, J = 7.2 Hz, Jgem = 18.6 Hz), 2.81
(1H, dt, J = 7.2 Hz, Jgem = 18.6 Hz), 7.35–7.53 (5H, m); 13C NMR
(75 MHz, CDCl3) d 13.4, 13.8, 22.2, 22.3, 22.9, 25.1, 28.5, 31.0,
33.9, 37.6, 84.9, 91.0, 124.3, 129.2, 129.3, 139.0, 163.1, 166.1,
200.0; IR (neat) 2959, 2934, 2872, 1761, 1269 cmꢁ1; HRMS (ESI)
calcd for C21H28O5 (M + Na+) 383.1834, found 383.1830.
The typical procedure of Table 2 (entry 2): NaOMe (1.0 M in
MeOH, 0.27 mL, 0.27 mmol) was added to a stirred solution of 3b
(195 mg, 0.54 mmol) in MeOH (1.0 mL) at 0–5 1C under an Ar
10 B. M. Trost, G. D. Probst and A. Schoop, J. Am. Chem. Soc., 1998,
120, 9228.
11 (a) K. Wakasugi, A. Iida, T. Misaki, Y. Nishii and Y. Tanabe, Adv.
Synth. Catal., 2003, 345, 1209; (b) H. Nakatsuji, J. Morita, T. Misaki
and Y. Tanabe, Adv. Synth. Catal., 2006, 348, 2057.
atmosphere, followed by stirring at the same temp. for 2 h. The 12 Asymmetric organocatalysis for preparing a-alkyl-a-hydroxy-b-keto-
esters; T. Misaki, G. Takimoto and T. Sugimura, J. Am. Chem. Soc.,
2010, 132, 6286. This method affords the diastereomeric diol isomer
of 6. The utility of these compounds is cited therein.
mixture was quenched with water (5 mL), which was extracted twice
with ether. The combined organic phase was washed with water,
brine, dried (Na2SO4) and concentrated. The obtained crude oil was 13 (a) B. M. Trost, M. Machacek and M. J. Schnaderbeck, Org. Lett.,
2000, 2, 1761; (b) B. M. Trost, M. U. Frederiksen and M. T. Rudd,
purified by SiO2-column chromatography (hexane–AcOEt = 15 : 1 -
Angew. Chem., Int. Ed., 2005, 44, 6630.
10 : 1) to give the desired (2R)-methyl 2-butyl-2-hydroxy-3-oxooctanoate
14 R. W. Hoffman and S. Dressely, Angew. Chem., Int. Ed. Engl., 1986,
4b (109 mg, 82%) and (S)-methyl atrolactate (10) (91 mg, 93%).
25, 189.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 7001--7003 7003