New Journal of Chemistry
Page 4 of 4
50 Notes and references
Additionally, introduction of alkyl or aryl substituents on a
a
Department of Organic Chemistry, Faculty of Chemistry, Gdańsk
phosphorus atom causes a decrease in electrophilicity of the
radical, which results in the lower yield in the cyclization step
where electron rich πꢀbond is attacked.
University of Technology, Narutowicza 11/12, 80ꢀ233 Gdańsk, Poland.
Fax: 48ꢀ58ꢀ347ꢀ2694; Tel: 48ꢀ58ꢀ347ꢀ1724; Eꢀmail: mak@pg.gda.pl
† Electronic Supplementary Information (ESI) available: [Experimental
55 procedures for the preparation of compounds 3aꢀf, 4aꢀf, 5f and 6a and
their spectroscopic characterization]. See DOI: 10.1039/b000000x/
5
O
O
EtO
EtO
EtO
EtO
EtO
EtO
O
EtO
EtO
O
P
P
P
P
Ph
tBu
Ph
tBu
Mn3+
-H+
Mn3+
1
(a) T. J. Dougherty, M. J. Pucci, Antibiotic Discovery and
Development, Springer, 2012. DOI: 10.1007/978ꢀ1ꢀ4614ꢀ
1400ꢀ1; (b) R. B. Morin, M. Gorman, Chemistry and Biology
of βꢀLactam Antibiotics, Academic Press: New York, 1982.
(a) J. Clader, D. A. Burnett, M. A. Caplen, M. S. Domalski, S.
Dugar, W. Vaccaro, R. Sher, M. E. Browne, H. Zhao, R. E.
Burrier, B. Salisbury, H. R. Davis, J. Med. Chem., 1996, 39,
3684. (b) S. B. Rosenblum, T. Huynh, A. Afonso, H. R. Davis,
N. Yumibe, J. W. Clader, D. A. Burnett, J. Med. Chem.,
1998, 41, 973. (c) B. A. McKittrick, K. Ma, K. Huie, N.
Yumibe, H. Davis, J. W. Clader, M. Czarniecki, J. Med.
Chem., 1998, 41, 752.
N
N
N
N
O
O
O
tBu
O
tBu
4a
6a
60
65
Scheme 3 Subsequent oxidation of 4a
2
On the other hand, in all reactions, acetophenone as a byꢀ
10 product was observed, meaning oxidative cleavage of πꢀbond15
competes with radical formation and causes the decomposition of
the substrate. The last observed drawback is due to the
subsequent oxidation of already formed 3ꢀphosphoryl βꢀlactam.
We observed in an independent experiment that heating of 4a
15 within 2 h with 4 eq of Mn(OAc)3•2H2O leads to approx. 13%
conversion of 4a into 6a through, intramolecular aromatic radical
substitution (Scheme 3).
In summary, we have described the method for preparing 3ꢀ
phosphoryl βꢀlactams and 3ꢀthiophosphoryl βꢀlactams‡ based on
20 the use of radical cyclization of phosphonoꢀacetenamides. The
method is simple, convenient and does not require the use of
noble metals as in comparable literature methods that are known.
The obtained yields are moderate, and depends on substitution on
the phosphorus atom. Among tested oxidizers, the best results
25 was obtained with Mn(OAc)3•2H2O.
70
3
(a) I. Banik, F. F. Becker, B. K. Banik, J. Med. Chem., 2003,
46, 12, (b) G. GeronaꢀNavarro, J. Pérez de Vega, T. Garcíaꢀ
López, G. Andrei, R. Snoeck, E. Clercq, J. Balzarini, R.
GonzálezꢀMuñiz, J. Med. Chem., 2005, 48, 2612, (c) F.
Tripodi, R. Pagliarin, G. Fumagalli, A. Bigi, P. Fusi, F. Orsini,
M. Frattini, P. Coccetti, J. Med. Chem., 2012, 55, 2112.
B. M. Nilsson, B. Ringdahl, U. Hacksell, J. Med. Chem., 1990,
33, 580.
S. K. Shah, J. C. Dorn, P. E. Finke, J. J. Hale, W. K.
Hagmann, K. A. Brause, G. Chandler, A. L. Kissinger, B. M.
Ashe, H. Weston, W. B. Knight, A. L. Maycock, P. S. Dellea,
D. S. Fletcher, K. M. Hand, R. A. Mumford, D. A.
Underwood, J. B. Dohertyt, J. Med. Chem., 1992, 35, 3745.
(a) I. Ojima, K. Nakahashi, S. M. Brandstadter, N. Hatanaka,
J. Am. Chem. Soc., 1987, 109, 1798, (b) I. Ojima, S. Suga, R.
Abe, Chem. Lett., 1980, 9, 853. (c) I. Ojima, H. C. Chen, X.
Qiu, Tetrahedron, 1988, 44, 5307.
75
4
5
80
6
7
Experimental
85
Typical procedure for the preparation of diethyl 1ꢀtertꢀbutylꢀ2ꢀ
oxoꢀ4ꢀ(1ꢀphenylvinyl)azetidinꢀ3ꢀylphosphonate (4a): To a stirred
mixture of diethyl 2ꢀ[methyl(2ꢀphenylpropꢀ1ꢀenyl)amino]ꢀ2ꢀ
30 oxoethylphosphonate (3a) (1 mmol, 0.367g ) in acetic acid (10
mL) at reflux, was added Mn(OAc)3•2H2O (2 mmol, 0.535 g).
After 10 min., reaction mixture was cooled and poured into 50mL
of ice water, and extracted with CH2Cl2 (5x20 mL). Organic layer
was washed with aqueous 5 % NaHCO3 (3x10mL), dried with
35 MgSO4 and concentrated. The residue was subject to column
chromatography over silica gel using hexanes/EtOAc (1:1) as
eluent to give 4a with 50% yield. 1H NMR (200 MHz, CDCl3): δ
(ppm) 1.24 (3 H, t, J = 6.9 Hz), 1.30 (3 H, t, J = 6.9 Hz), 1.38 (9
H, s), 3.23 (1 H, dd, JPH = 13.9 Hz, JHH = 2.4 Hz), 4.04ꢀ4.23 (4 H,
40 m), 4.66 (1 H, dd, JPH = 9.2 Hz, JHH = 2.4 Hz), 5.51 (1 H, s), 5.59
(1 H, s), 7.33ꢀ7.49 (5 H, m). 13C NMR (50 MHz, CDCl3): δ
(ppm) 16.7 (d, J2 = 3.1 Hz), 16.8 (d, J2 = 3.2 Hz), 28.3, 54.2 (d, J1
= 29.3 Hz), 55.8 (d, J2 = 2.2 Hz), 56.7, 62.8 (d, J2 = 6.5 Hz), 63.2
(d, J2 = 6.1 Hz), 115.8, 127.1, 128.7, 129.0, 139.2, 148.3 (d, J3 =
45 2.8 Hz), 162.6 (d, J2 = 6.3 Hz). HRMS (ESI): m/z [M + Na]+
calcd for C19H28NO4PNa: 388.1654; found: 388.1665.
K. Janikowska, N. Pawelska, S. Makowiec, Synthesis, 2011,
69.
8
9
D. F. Wiemer, Y. Du, J. Org. Chem., 2002, 67, 5709.
M. Nahmany, A. Melman, J. Org. Chem. 2006, 71, 5804.
90
10 (a) Gois, M. P.; Afonso, C. A.; Tetrahedron Letters, 2003, 44,
6571, (b) N. R. Candeias, M. P. Gois, C. A. Afonso, J. Org.
Chem. 2006, 71, 5489. (c) L. F. Gomes, A. F. Trindade, N. R.
Candeias, L. F. Verios, M. P. Gois, C. A. Afonso, Synthesis,
2009, 20, 3519.
95
11 M. P. Gois, C. A. Afonso, Eur. J. Org. Chem., 2003, 19, 3798.
12 (a) A. D’Annibale, S. Resta, C. Trogolo, Tetrahedron Lett.,
1995, 36, 9039. (b) A. D’Annibale, A. Pesce, S. Resta, C.
Trogolo, Tetrahedron Lett., 1996, 37, 7429. (c) A.
D’Annibale, A. Pesce, S. Resta, C. Trogolo, Tetrahedron,
1997, 53, 13129. (d) B. Attenni, A. Cerreti, A. D’Annibale, S.
Resta. C. Trogolo, Tetrahedron, 1998, 53, 12029.
13 (a) J. H. Hillhouse, I. A. Blair, L. Field, Phosphorus, Sulfur
Silicon Relat. Elem., 1986, 169, 26. (b) I. Mohammadpoorꢀ
Baltorka, M. M. Sadeghia, K. Esmayilpoura, Phosphorus,
Sulfur Silicon Relat. Elem., 2003, 178, 61.
100
105
110
14 B. B. Snider, Chem. Rev., 1996, 96, 339.
15 (a) C. E. Harris, L. Y. Lee, H. Dorr, B. Singararn, Tetrahedron
Lett., 1995, 36, 2921. (b) C. E. Harris, W. Chrisman, S. A.
Bickford, L. Y. Lee, A. E. Torreblanca, B. Singaram,
Tetrahedron Lett., 1997, 38, 981. (c) M. Takemoto, Y. Iwakiri,
Y. Suzuki, K. Tanaka, Tetrahedron Lett., 2004, 45, 8061.
Acknowledgments
We thank the Gdańsk University of Technology for financial
support (DS 020334 T. 001).
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3