chemoselective activation of different CÀX bonds, and
another is regioselective activation of one kind of CÀX
bond. Using the former strategy, our group reported an
example to synthesize triarylated benzene with sequential
transition-metal-catalyzed activation of CÀCl, CÀCN,
and CÀOMe bonds.4 With the latter strategy, several
groups have developed various methods to synthesize
multiarylated arenes and heteroarenes. For example, Miller
and co-workers reported a regioselective CÀBr bond
activation and cross-coupling to construct enantiomerically
enriched multiarylated poly arenes.5
Due to the high step-economy and atom-economy,
direct arylation of aryl CÀH bonds became more powerful
to synthesize various biaryls. Moreover, multiarylation of
aryl CÀH bonds has been also realized by many groups.
For example, Gaunt and co-workers realized one example
of synthesis of multiarylated aniline derivative through
copper-catalyzed sequential CÀH bond activation.6 Itami
and co-workers developed a sequential palladium-catalyzed
cross-coupling to synthesize multiarylated thiophenes via
CÀH activation.7 Recently, a sequential Pd-catalyzed
arylation of imidazoles and thiazoles has also been
reported by Murai and Shibahara.8
On the other hand, CÀO bond activation has recently
drawn much attention due to the easy availability, low
toxicity, and environmental friendliness of oxygen-con-
taining compounds.9 Different types of CÀO bonds, in-
cluding those in sulfates,10 phosphates,11 esters,12 ethers,13
and even alcohols and phenols,14 have been readily used as
coupling partners. In these reports, the activities of various
CÀO bonds have been systematically studied. It is found
that the reactivity of CÀO bonds could be very different
and largely depends on the nature of the O-containing
leaving group. On the basis of this feature, a substrate
containing several different CÀO bonds with distinguish-
able reactivities could be selectively applied to construct
multiarylated arenes. Moreover, polyphenols exist widely in
nature and are one of the most important structures in
biomass. To our knowledge, the synthesis of important
multiarylated arenes using commercially available and in-
expensive polyphenols as the starting materials has never
been reported. Herein, we report a programmed synthesis of
multiarylated benzenes via selective and sequential CÀO
bond activation of phloroglucinol derivatives (Scheme 1).
(8) Shibahara, F.; Yamauchi, T.; Yamaguchi, E.; Murai, T. J. Org.
Chem. 2012, 77, 8815.
(9) For reviews on CÀO bond activation, see: (a) Lin, Y.; Yamamoto,
A. In Topics in Organometallic Chemistry: Activation of Unreactive
Bonds and Organic Synthesis; Murai, S., Ed.; Springer: Berlin, 1999. (b)
Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem. 2013, 19. (c) So,
C. M.; Kwong, F. Y. Chem. Soc. Rev. 2011, 40, 4963. (d) McGlacken,
G. P.; Clarke, S. L. ChemCatChem 2011, 3, 1260. (e) Tobisu, M.;
Chatani, N. ChemCatChem 2011, 3, 1410. (f) Rosen, B. M.; Quasdorf,
K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.;
Percec, V. Chem. Rev. 2011, 111, 1346. (g) Li, B.-J.; Yu, D.-G.; Sun,
C.-L.; Shi, Z.-J. Chem.;Eur. J. 2011, 17, 1728. (h) Yu, D.-G.; Li, B.-J.;
Shi, Z.-J. Acc. Chem. Res. 2010, 43, 1486. (i) Knappke, C. E. I.; Jacobi
von Wangelin, A. J. Angew. Chem., Int. Ed. 2010, 49, 3568. (j) Gooßen,
L. J.; Gooßen, K.; Stanciu, C. Angew. Chem., Int. Ed. 2009, 48, 3569.
(10) (a) Naber, J. R.; Fors, B. P.; Wu, X.; Gunn, J. T.; Buchwald, S. L.
Heterocycles 2010, 80, 1215. (b) Albaneze-Walker, J.; Raju, R.; Vance,
J. A.; Goodman, A. J.; Reeder, M. R.; Liao, J.; Maust, M. T.; Irish,
P. A.; Espino, P.; Andrews, D. R. Org. Lett. 2009, 11, 1463. (c)
Ackermann, L.; Althammer, A. Org. Lett. 2006, 8, 3457. (d) Wu, J.;
Zhang, L.; Gao, K. Eur. J. Org. Chem. 2006, 5260. (e) Percec, V.;
Golding, G. M.; Smidrkal, J.; Weichold, O. J. Org. Chem. 2004, 69, 3447.
(f) Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem. Soc. 2004, 126, 3058. (g) Roy,
A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 8704.
Scheme 1. Programmed Synthesis of Multiarylated Benzenes
through Transition-Metal-Catalyzed Sequential sp2 CÀO Bond
Activation
(11) (a) Occhiato, E. G.; Scarpi, D.; Prandi, C. Heterocycles 2010, 80,
697. (b) Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc.
2009, 131, 9590. (c) Gauthier, D.; Beckendorf, S.; Gøgsig, T. M.;
Lindhardt, A. T.; Skrydstrup, T. J. Org. Chem. 2009, 74, 3536. (d)
Fuwa, H.; Sasaki, M. Heterocycles 2008, 76, 521. (e) Schwier, T.;
Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am.
Chem. Soc. 2007, 129, 9868. (f) Hansen, A. L.; Ebran, J.-P.; Gøgsig,
T. M.; Skrydstrup, T. J. Org. Chem. 2007, 72, 6464. (g) Lipshutz, B. H.;
Frieman, B. A.; Butler, T.; Kogan, V. Angew. Chem., Int. Ed. 2006, 45,
800. (h) Huang, W. G.; Jiang, Y. Y.; Li, Q.; Li, J.; Li, J. Y.; Lu, W.; Cai,
J. C. Tetrahedron 2005, 61, 1863. (i) Miller, J. A. Tetrahedron Lett. 2002,
43, 7111. (j) Cahiez, G.; Avedissian, H. Synthesis 1998, 1199.
At the initial stage of the design of sequential activation
of the CÀO bond in polyphenols, there are two major
(12) (a) Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012,
134, 169. (b) Song, W.; Ackermann, L. Angew. Chem., Int. Ed. 2012, 51,
8251. (c) Silberstein, A. L.; Ramgren, S. D.; Garg, N. K. Org. Lett. 2012,
14, 3796. (d) Shimasaki, T.; Tobisu, M.; Chatani, N. Angew. Chem., Int.
Ed. 2010, 49, 2929. (e) Yu, J.-Y.; Shimizu, R.; Kuwano, R. Angew.
Chem., Int. Ed. 2010, 49, 6396. (f) Guan, B.-T.; Lu, X.-Y.; Zheng, Y.; Yu,
D.-G.; Wu, T.; Li, K.-L.; Li, B.-J.; Shi, Z.-J. Org. Lett. 2010, 12, 396. (g)
Sun, C.-L.; Wang, Y.; Zhou, X.; Wu, Z.-H.; Li, B.-J.; Guan, B.-T.; Shi,
Z.-J. Chem.;Eur. J. 2010, 16, 5844. (h) Li, B.-J.; Xu, L.; Wu, Z.-H.;
Guan, B.-T.; Sun, C.-L.; Wang, B.-Q.; Shi, Z.-J. J. Am. Chem. Soc. 2009,
131, 14656. (i) Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K.
J. Am. Chem. Soc. 2009, 131, 17748. (j) Li, Z.; Zhang, S.-L.; Fu, Y.; Guo,
Q.-X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 8815. (k) Antoft-Finch, A.;
Blackburn, T.; Snieckus, V. J. Am. Chem. Soc. 2009, 131, 17750. (l) Yu,
J.-Y.; Kuwano, R. Angew. Chem., Int. Ed. 2009, 48, 7217. (m) Guan,
B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem. Soc. 2008,
130, 14468. (n) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem.
Soc. 2008, 130, 14422. (o) Li, B.-J.; Li, Y.-Z.; Lu, X.-Y.; Liu, J.; Guan,
B.-T.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 10124. (p) Sengupta, S.;
Leite, M.; Raslan, D. S.; Quesnelle, C.; Snieckus, V. J. Org. Chem. 1992,
57, 4066. (q) Wenkert, E.; Michelotti, E. L.; Swindell, C. S.; Tingoli, M.
J. Org. Chem. 1984, 49, 4894. (r) Wenkert, E.; Michelotti, E. L.;
Swindell, C. S. J. Am. Chem. Soc. 1979, 101, 2246.
(13) (a) Taylor, B.; Harris, M.; Jarvo, E. Angew. Chem., Int. Ed. 2012,
51, 7790. (b) Taylor, B.; Swift, E.; Waetzig, J.; Jarvo, E. J. Am. Chem. Soc.
2011, 133, 389. (c) Ogiwara, Y.; Kochi, T.; Kakiuchi, F. Org. Lett. 2011,
13, 3254. (d) Tobisu, M.; Yamakawa, K.; Shimasaki, T.; Chatani, N.
Chem. Commun. 2011, 47, 2946. (e)Shimasaki, T.;Konno, Y.;Tobisu, M.;
Chatani, N. Org. Lett. 2009, 11, 4890. (f) Tobisu, M.; Shimasaki, T.;
Chatani, N. Chem. Lett. 2009, 38, 710. (g) Guan, B.-T.; Xiang, S.-K.;
Wang, B.-Q.; Sun, Z.-P.; Wang, Y.; Zhao, K.-Q.; Shi, Z.-J. J. Am. Chem.
Soc. 2008, 130, 3268. (h) Tobisu, M.; Shimasaki, T.; Chatani, N. Angew.
Chem., Int. Ed. 2008, 47, 4866. (i) Guan, B.-T.; Xiang, S.-K.; Wu, T.; Sun,
Z.-P.; Wang, B.-Q.;Zhao, K.-Q.; Shi, Z.-J. Chem. Commun. 2008, 1437. (j)
Ueno, S.; Mizushima, E.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc.
2006, 128, 16516. (k) Kakiuchi, F.; Usui, M.; Ueno, S.; Chatani, N.;
Murai, S. J. Am. Chem. Soc. 2004, 126, 2706. (l) Hayashi, T.; Katsuro, Y.;
ꢀ
Kumada, M. Tetrahedron Lett. 1980, 21, 3915. (m) Cornella, J.; Gomez-
Bengoa, E.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1997.
(14) (a) Lee, D.-H.; Kwon, K.-H.; Yi, C. S. J. Am. Chem. Soc. 2012, 134,
7325. (b) Yu, D.-G.; Wang, X.; Zhu, R.-Y.; Luo, S.; Zhang, X.-B.; Wang, B.-
Q.; Wang, L.; Shi, Z.-J. J. Am. Chem. Soc. 2012, 134, 14638. (c) Lee, D.-H.;
Kwon, K.-H.; Yi, C. S. Science 2011, 333, 1613. (d) Yu, D.-G.; Shi, Z.-J.
Angew. Chem., Int. Ed. 2011, 50, 7097. (e) Yu, D.-G.; Li, B.-J.; Zheng, S.-F.;
Guan, B.-T.; Wang, B.-Q.; Shi, Z.-J. Angew. Chem., Int. Ed. 2010, 49, 4566.
Org. Lett., Vol. 15, No. 13, 2013
3231