of various 2-deoxy-sugars have been described.10 However,
with the exception of Gervay-Hague’s glycosyl iodides and
Zhu’s umpolung approach,10d,f little attempt has been made
to elucidate the origins of the stereoselectivity in these
reactions. In addition, this selectivity does not always trans-
late well between different systems,11 and many activated
2-deoxy-sugars are extremely unstable, requiring specialized
media for their purification.10e As a result, many groups have
developed indirect approaches to the construction of
2-deoxy-sugars through the use of either temporary directing
groups12 or de novo synthesis.13 These latter approaches
necessarily introduce additional steps, decreasing the overall
efficiency of the synthesis.
reactivity of different sulfonates has been reported to span
several orders of magnitude,18 little work has been done on
glycosyl sulfonates other than triflates since the seminal
studies of the Schuerch and Koto groups over three decades
ago.19 This is due to the fact that many of these procedures
required the isolation of highly unstable species. Addition-
ally, those procedures for in situ generation of sulfonates
often led to nonselective reactions. The lack of selectivity is
presumably due to the presence of several other nucleophilic
ions in solution, which could scramble the stereochemistry of
the anomeric leaving group.20
As part of an ongoing program aimed at developing
selective methods for 2-deoxy-sugar synthesis,14 we chose
to examine the in situ generation of different glycosyl
sulfonates for β-selective glycosylations. While glycosyl
triflates can undergo SN2-like reactions to afford β-linked
products with certain substrates,15 Crich has shown that
2-deoxy glycosyl triflates are generally very unstable.16
Furthermore, Woerpel has demonstrated that, even in
examples where 2-deoxy-sugar triflates are not subject to
decomposition, they only undergo β-selective reactions when
strong carbon nucleophiles are employed as acceptors.17 In
principle, a more stable sulfonate should possess greater
covalent character, permitting direct SN2 displacement to
afford the product as a single diastereomer. While the
Scheme 1. N-Sulfonylimidazoles for β-Selective Glycosylations
To address these issues we chose to examine the use of
N-sulfonyl imidazoles as reagents for converting hemiacetals
into glycosyl sulfonates in situ (Scheme 1). These species
have been shown to promote sulfonate ester formation21
and nucleotide coupling22 without the generation of nucleo-
philic byproducts. Importantly, the synthesis of N-sulfonyl
imidazoles is trivial,23 which would permit the rapid synth-
esis of a large library of compounds to tune reactivity.
Our initial investigations focused on thiol nucleophiles
owing to both their increased reactivity and the fact that thio-
glycoside linkages are useful, nonhydrolyzable carbohydrate
mimetics.24 To this end, deprotonation of 1 with KHMDS
in THF at low temperature25 was followed first by addition
of N-tosylimidazole (TsIm) and then the nucleophile. The
selectivity in the reaction was dependent on the amount
of time 1 was allowed to react with the TsIm (Table 1,
entries 1ꢀ3). Longer reaction times generally led to higher
(11) (a) Guo, Y.; Sulikowski, G. A. J. Am. Chem. Soc. 1998, 120,
1392–1397. (b) Pongdee, R.; Wu, B.; Sulikowski, G. A. Org. Lett. 2001,
3, 3523–3525.
(12) (a) Thiem, J.; Gerken, M. J. Org. Chem. 1985, 50, 954–958. (b)
Nicolaou, K. C.; Ladduwahetty, T.; Randall, J. L.; Chucholowski, A.
J. Am. Chem. Soc. 1986, 108, 2466–2467. (c) Ito, Y.; Ogawa, T.
Tetrahedron Lett. 1987, 28, 2723–2726. (d) Preuss, R.; Schmidt, R. R.
Synthesis 1988, 694–697. (e) Kahne, D.; Yang, D.; Lim, J. J.; Miller, R.;
Paguaga, E. J. Am. Chem. Soc. 1988, 110, 8716–8717. (f) Crich, D.;
Ritchie, T. J. J. Chem. Soc., Chem. Commun. 1988, 1461–1463. (g) Perez,
M.; Beau, J.-M. Tetrahedron Lett. 1989, 30, 75–78. (h) Trumtel, M.;
ꢂ
Tavecchia, P.; Veyrieres, A.; Sinay, P. Carbohydr. Res. 1989, 191, 29–52.
(i) Gervay, J.; Danishefsky, S. J. Org. Chem. 1991, 56, 5448–5451. (j)
Grewal, G.; Kaila, N.; Franck, R. W. J. Org. Chem. 1992, 57, 2084–2092.
(k) Hashimoto, S.-i.; Yanagiya, Y.; Honda, T.; Ikegami, S. Chem. Lett.
1992, 21, 1511–1514. (l) Roush, W. R.; Sebesta, D. P; Bennett, C. E.
Tetrahedron 1997, 53, 8825–8836. (m) Roush, W. R.; Sebesta, D. P.;
James, R. A. Tetrahedron 1997, 53, 8837–8852. (n) Franck, R. W.;
Marzabadi, C. H. J. Org. Chem. 1998, 63, 2197–2208. (o) Roush, W. R.;
Bennett, C. E. J. Am. Chem. Soc. 1999, 121, 3541–3542. (p) Roush,
W. R.; Gung, B. W.; Bennett, C. E. Org. Lett. 1999, 1, 891–893. (q) Yu,
B.; Wang, P. Org. Lett. 2002, 4, 1919–1922. (r) Bucher, C.; Gilmour, R.
Angew. Chem., Int. Ed. 2010, 49, 8724–8728.
(19) (a) Eby, R.; Schuerch, C. Carbohydr. Res. 1974, 34, 79–90. (b) Koto,
S.; Hamada, Y.; Zen, S. Chem. Lett. 1975, 587–588. (c) Lucas, T. J.;
(13) (a) McDonald, F. E.; Reddy, K. S.; Dıaz, Y. J. Am. Chem. Soc.
´
ꢁ
Schuerch, C. Carbohydr. Res. 1975, 39, 39–45. (d) Marousek, V.; Lucas,
2000, 122, 4304–4309. (b) Haukaas, M. H.; O’Doherty, G. A. Org. Lett.
2002, 4, 1771–1774. (c) Zhou, M.; O’Doherty, G. A. Org. Lett. 2008, 10,
2283–2286. (d) Zhou, M.;O’Doherty, G. A. Org. Lett. 2006, 8, 4339–4342.
(e) Zhou, M.; O’Doherty, G. A. Curr. Top. Med. Chem. 2008, 8, 114–125.
(f) Zhou, M.; O’Doherty, G. A. J. Org. Chem. 2007, 72, 2485–2493.
(14) (a) Nogueira, J. M.; Nguyen, S. H.; Bennett, C. S. Org. Lett.
2011, 13, 2814–2817. (b) Nogueira, J. M.; Issa, J. P.; Chu, A.-H. A.; Sisel,
J. A.; Schum, R. S.; Bennett, C. S. Eur. J. Org. Chem. 2012, 4927–4930.
(15) (a) Crich, D.; Sun, S. J. Am. Chem. Soc. 1997, 119, 11217–11223.
T. J.; Wheat, P. E.; Schuerch, C. Carbohydr. Res. 1978, 60, 85–96. (e)
Srivastava, V. K.; Schuerch, C. Carbohydr. Res. 1980, 79, C13–C16. (f) Koto,
S.; Sato, T.; Morishima, N.; Zen, S. Bull. Chem. Soc. Jpn. 1980, 53, 1761–
1762. (g) Srivastava, V. K.; Schuerch, C. J. Org. Chem. 1981, 46, 1121–1126.
(20) Boebel, T. A.; Gin, D. Y. J. Org. Chem. 2005, 70, 5818–5826.
(21) (a) Staab, H. A.; Wendel, K. Angew. Chem. 1960, 72, 708. (b)
Hicks, D. R.; Fraser-Reid, B. Synthesis 1974, 203–204.
(22) van Boom, J. H.; van der Marel, G.; Verdegaal, C. H. M.; Wille,
M. G. Nucleic Acids Res. 1977, 4, 1047–1064.
ꢀ
(b) Huang, M.; Retailleau, P.; Bohe, L.; Crich, D. J. Am. Chem. Soc.
2012, 134, 14746–14749. (c) Huang, M.; Garrett, G. E.; Birlirakis, N.;
Bohe, L.; Pratt, D. A.; Crich, D. Nat. Chem. 2012, 4, 663–667.
ꢀ
ꢀ
(23) Suwinski, J.; Salwinska, E. Tetrahedron 1994, 50, 5741–5752.
(24) (a) Suzuki, Y.; Sato, K.; Kiso, M.; Hasegawa, A. Glycoconjugate
J. 1990, 7, 349–356. (b) Wilson, J. C.; Kiefel, M. J.; Angus, D. L.; von
Itzstein, M. Org. Lett. 1999, 1, 443–446. (c) Driguez, H. ChemBioChem
2001, 2, 311–318. (d) Rich, J. R.; Wakarchuk, W. W.; Bundle, D. R.
Chem.;Eur. J. 2006, 12, 845–858. (e) Noel, A.; Delpech, B.; Crich, D.
Org. Lett. 2012, 14, 4138–4141.
ꢀ
(16) Crich, D.; Vinogradova, O. J. Org. Chem. 2006, 718473–8480.
(17) (a) Krumper, J. R.; Salamant, W. A.; Woerpel, K. A. Org. Lett.
2008, 10, 4907–4910. (b) Krumper, J. R.; Salamant, W. A.; Woerpel,
K. A. J. Org. Chem. 2009, 74, 8039–8050.
(18) Paleos, C. M.; Varveri, F. S.; Gregoriou, G. A. J. Org. Chem.
1974, 39, 3594–3595.
(25) Morris, W. J.; Shair, M. D. Org. Lett. 2009, 11, 9–12.
B
Org. Lett., Vol. XX, No. XX, XXXX