Organic Letters
Letter
a
in which the diaryliodonium salt acts as an electrophile to trap
the transient intermediates generated from the [2 + 2] π-bond
cyclization of aryne and DMF.
Table 3. Substrate Scope of Diaryliodonium Salts
In summary, we have realized a useful approach for the
synthesis of ortho-CHO diaryl ethers by a three-component
sequential coupling reaction of arynes, DMF, and diary-
liodonium salts. Remarkably, a C−C bond and two new C−
O bonds simultaneously formed in the transformation.
Mechanistically, isotope experiments disclose that the diary-
liodonium salt functions as an electrophile to trap the active
intermediates generated from the [2 + 2] cyclization of an
aryne and DMF. Further applications of the practical method to
some interesting natural products and diaryl ether materials are
under investigation in our laboratory and will be reported in
due course.
entry
diaryliodonium salts
product
yield (%)
1
2
R = Cl, Ar = p-ClC6H4 2g
R = Br, Ar = p-BrC6H4 2h
R = Bu, Ar = p-t‑BuC6H4 2i
3bg
3bh
3bi
78
81
83
84
61
65
83
88
65
84
56
85
72
76
68
t‑
3
4
R = OMe, Ar = C6H5 2j
3ba
3bk
3bg
3bh
3bn
3bo
3bp
3bq
3br
3bs
3bt
5
R = OMe, Ar = p-FC6H4 2k
R = OMe, Ar = p-ClC6H4 2l
R = OMe, Ar = p-BrC6H4 2m
R = OMe, Ar = p-CF3C6H4 2n
R = OMe, Ar = p-NO2C6H4 2o
R = OMe, Ar = o-MeC6H4 2p
R = OMe, Ar = m-MeC6H4 2q
R = OMe, Ar = p-MeC6H4 2r
R = OMe, Ar = 2,4,6-Me3C6H2 2s
R = OMe, Ar = 3-pyridyl 2t
R = OMe, Ar = 2-(6-Cl)pyridyl 2u
6
7
8
9
10
ASSOCIATED CONTENT
* Supporting Information
b
■
11
b
S
12
13
14
15
Complete experimental details and characterization data for the
compounds. This material is available free of charge via the
3bu
a
Reaction conditions: 1b (0.15 mmol), 2 (1.2 equiv), KF (4.0 equiv),
b
AUTHOR INFORMATION
Corresponding Author
DMF (1.0 mL), 60 °C, 3 h; all yields are isolated. Reaction time was
■
prolonged to 8 h.
Notes
coupling reaction and provided 3bk−bo in 61−88% yields
(entries 5−9). In contrast to 2p with an ortho-methyl group
(entry 10), 2q and 2r containing a methyl group at the meta-
and para-position that seem less reactive proceeded in the
reaction with a prolonged reaction time of up to 8 h, affording
3bq and 3br in 56% and 85% yields, respectively (entries 11
and 12). Significantly, highly substituted salt 2s is also
compatible with this transformation, and the reaction enabled
the formation of 3bs in 72% yield smoothly (entry 13).
Importantly, ortho-CHO pyridyl ethers 3bt and 3bu can be
isolated in 76% and 68% yields with pyridyliodonium salts 2t
and 2u as electrophiles (entries 14 and 15).
In order to explore the reaction mechanism, isotopic tracer
experiments were executed. As shown in Scheme 3, the
reactions proceeded in D-DMF (eq 1), 13C-DMF (eq 2), and
18O-DMF (eq 3), delivering the corresponding isotope labeled
products 3ba-D, 3ba-13C, and 3ba-18O in high yields,
respectively. Reasonably, these observations reveal that such a
three-component sequential coupling reaction should go
through the postulated pathway demonstrated at Scheme 2,
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Financial support from Hundred Talent Program of Chinese
Academy of Sciences (CAS) is gratefully acknowledged.
■
REFERENCES
■
(1) For selected reviews, see: (a) Ungnade, H. E. Chem. Rev. 1946,
38, 405. (b) Lindley, J. Tetrahedron 1984, 40, 1433. (c) Evans, D. A.;
DeViries, K. M. In Glycopeptide Antibiotics, Drugs and the
Pharmaceutical Sciences; Nagarajan, R., Ed.; Marcel Decker: New
York, 1994; p 63. (d) Sawyer, J. S. Tetrahedron 2000, 56, 5045.
(e) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(f) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.
(g) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
(h) Chen, X.; Ding, S.; Zhan, P.; Liu, X. Curr. Pharm. Des. 2013, 19,
2829.
(2) (a) Ullmann, F. Chem. Ber. 1904, 37, 853. (b) Fanta, P. E. Chem.
Rev. 1946, 38, 139. (c) Moroz, A. A.; Shvartsberg, M. S. Russ. Chem.
Rev. 1974, 43, 679.
(3) For reviews, see: (a) Beletskaya, I. P.; Cheprakov, A. V. Coord.
Chem. Rev. 2004, 248, 2337. (b) Rao, H.; Fu, H. Synlett 2011, 745.
(c) Qiao, J.-X.; Lam, P. Y. S. Synthesis 2011, 829. For selected
representative examples, see: (d) Marcoux, J. F.; Doye, S.; Buchwald,
S. L. J. Am. Chem. Soc. 1997, 119, 10539. (e) Gujadhur, R. K.; Bates, C.
G.; Venkataraman, D. Org. Lett. 2001, 3, 4315. (f) Buck, E.; Song, Z. J.;
Tschaen, D.; Dormer, P. G.; Volante, R. P.; Reider, P. J. Org. Lett.
2002, 4, 1623. (g) Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799. (h) Cai,
Q.; He, G.; Ma, D. J. Org. Chem. 2006, 71, 5268. (i) Cai, Q.; Zou, B.;
Ma, D. Angew. Chem., Int. Ed. 2006, 45, 1276. (j) Niu, J.; Zhou, H.; Li,
Z.; Xu, J.; Hu, S. J. Org. Chem. 2008, 73, 7814. (k) Naidu, A. B.; Jaseer,
E. A.; Sekar, G. J. Org. Chem. 2009, 74, 3675. (l) Maiti, D.; Buchwald,
S. L. J. Org. Chem. 2010, 75, 1791. (m) Gavin, O.; Jones, G. O.; Liu, P.;
Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.
(4) For reviews, see: (a) Jiang, L., Buchwald, S. L. In Metal-Catalyzed
Cross-Coupling Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.;
Wiley-VCH: Weinheim, Germany, 2004. For recent selected
advances, see: (b) Maiti, D.; Buchwald, S. L. J. Am. Chem. Soc.
Scheme 3. Isotopic Tracer Experiments
C
dx.doi.org/10.1021/ol503224u | Org. Lett. XXXX, XXX, XXX−XXX