4
Tetrahedron
reported method.17a The reaction of 1k in the presence of DBU
Tetrahedron Lett. 2017, 58, 4094; (c) Min, B. K.; Lee, S.; Roh, H. J.;
Ryu, J. Y.; Lee, J.; Kim, J. N. Tetrahedron Lett. 2017, 58, 3251; (d)
Seo, D. Y.; Min, B. K.; Roh, H. J.; Kim, J. N. Bull. Korean Chem. Soc.
2017, 38, 1231; (e) Kim, S. Y.; Roh, H. J.; Seo, D. Y.; Ryu, J. Y.; Lee,
J.; Kim, J. N. Tetrahedron Lett. 2017, 58, 914; (f) Roh, H. J.; Kim, S.
Y.; Min, B. K.; Kim, J. N. Tetrahedron Lett. 2017, 58, 21; (g) Roh, H.
J.; Lim, J. W.; Ryu, J. Y.; Lee, J.; Kim, J. N. Tetrahedron Lett. 2016,
57, 4280; (h) Lim, J. W.; Kim, K. H.; Moon, H. R.; Kim, J. N.
Tetrahedron Lett. 2016, 57, 784; (i) Lim, J. W.; Moon, H. R.; Kim, S.
Y.; Kim, J. N. Tetrahedron Lett. 2016, 57, 133; (j) Kim, K. H.; Moon,
H. R.; Lee, J.; Kim, J.; Kim, J. N. Adv. Synth. Catal. 2015, 357, 1532;
(k) Kim, K. H.; Moon, H. R.; Lee, J.; Kim, J. N. Adv. Synth. Catal.
2015, 357, 701.
(0.2 equiv) was somewhat sluggish. We thought that the sluggish
reactivity might be due to steric hindrance around the -position
of 2-cyclohexen-1-one moiety of 1k, and the attack of DBU
might be difficult. However, we could not obtain desired -
adduct 2k or -adduct 3k at all even in the presence of an
equivalent amount of DBU. Instead, two unexpected compounds
6 (23%) and 7 (49%)17b were produced in moderate yields. When
we carried out the reaction without carbon disulfide, the
formation of 6 and 7 was not observed. The result stated that
carbon disulfide and DBU must be required for the formation of
these compounds. Literature survey revealed that DBU and
3. (a) Buxton, C. S.; Blakemore, D. C.; Bower, J. F. Angew. Chem. Int.
Ed. 2017, 56, 13824; (b) Ming, S.; Zhao, B.-L.; Du, D.-M. Org.
Biomol. Chem. 2017, 15, 6205; (c) Zhou, R.; Liu, R.; Zhang, K.; Han,
L.; Zhang, H.; Gao, W.; Li, R. Chem. Commun. 2017, 53, 6860.
4. (a) Cao, T.; Linton, E. C.; Deitch, J.; Berritt, S.; Kozlowski, M. C. J.
Org. Chem. 2012, 77, 11034; (b) Cao, T.; Deitch, J.; Linton, E. C.;
Kozlowski, M. C. Angew. Chem. Int. Ed. 2012, 51, 2448.
carbon
disulfide
produced
7-thia-1,5-
diazatricyclo[7.4.1.05,14]tetradec-9(14)-ene-6,8-dithione
and
DBU hydrogen sulfide salt (see, the box in Scheme 4).18 DBU
hydrogen sulfide salt might cause the conversion of 1k into 6
and 7; however, the mechanism is not clear at this stage.19
5. (a) Min, B. K.; Kim, S. Y.; Ryu, J. Y.; Lee, J.; Kim, J. N. Bull. Korean
Chem. Soc. 2017, 38, 140; (b) Zhao, Y.-Y.; Zhao, S.; Xie, J.-K.; Hu,
X.-Q.; Xu, P.-F. J. Org. Chem. 2016, 81, 10532.
6. For synthesis of thiophene-2-thione derivatives, see: (a) Labruere, R.;
Desbene-Finck, S.; Helissey, P.; Giorgi-Renault, S. Synthesis 2006,
4163; (b) Gladow, D.; Reissig, H.-U. J. Org. Chem. 2014, 79, 4492; (c)
Giofre, S. V.; Romeo, R.; Mancuso, R.; Cicero, N.; Corriero, N.;
Chiacchio, U.; Romeo, G.; Gabriele, B. RSC Adv. 2016, 6, 20777; (d)
Maercker, A.; Van de Flierdt, J.; Girreser, U. Tetrahedron 2000, 56,
3373; (e) Jenny, C.; Heimgartner, H. Helv. Chim. Acta 1986, 69, 419;
(f) Commercon, A.; Ponsinet, G. Tetrahedron Lett. 1985, 26, 5131; (g)
Jenny, C.; Obrecht, D.; Heingartner, H. Helv. Chim. Acta 1982, 65,
2583; (h) Meijer, J.; Ruitenberg, K.; Westmijze, H.; Vermeer, P.
Synthesis 1981, 551..
7. For synthesis of sulfur-containing heterocycles using carbon disulfide,
see: (a) Basavaiah, D.; Pal, S.; Veeraraghavaiah, G.; Bharadwaj, K. C.
Tetrahedron 2015, 71, 4659; (b) Dighe, S. U.; Yadav, V. D.;
Srivastava, R.; Mishra, A.; Gautam, S.; Srivastava, A. K.;
Balaramnavar, V. M.; Saxena, A. K.; Batra, S. Tetrahedron 2014, 70,
6841; (c) Pal, S. C.; Bhunia, S. C. Eur. J. Org. Chem. 2013, 4816; (d)
Chen, Z.; Clive, D. L. J. J. Org. Chem. 2010, 75, 7014; (e) Yadav, L. D.
S.; Patel, R.; Srivastava, V. P. Tetrahedron Lett. 2009, 50, 1335; (f)
Fukamachi, S.; Konishi, H.; Kobayashi, K. Heterocycles 2009, 78, 169;
(g) Gade, T.; Streek, M.; Voss, J. Chem. Ber. 1992, 125, 127 (h)
Aitken, R. A.; Raut, S. V.; Ferguson, G. Tetrahedron 1992, 48, 8023;
(i) Alemagna, A.; Buttero, P. D.; Licandro, E.; Maiorana, S.; Trave, R.
Tetrahedron 1984, 40, 971; (j) Villemin, D.; Alloum, A. B. Synth.
Commun. 1992, 22, 1351.
8. For synthetic applications of phosphorous ylides derived from MBH
adducts of isatin, see: (a) Li, H.; Lu, Y. Asian J. Org. Chem. 2017, 6,
1130; (b) Selvakumar, K.; Vaithiyanathan, V.; Shanmugam, P. Chem.
Commun. 2010, 46, 2826; (c) Wang, K.-K.; Jin, T.; Huang, X.; Ouyang,
Q.; Du, W.; Chen, Y.-C. Org. Lett. 2016, 18, 872; (d) Zhan, G.; Shi,
M.-L.; He, Q.; Du, W.; Chen, Y.-C. Org. Lett. 2015, 17, 4750; (e) Liu,
J.-Y.; Lu, H.; Li, C.-G.; Liang, Y.-M.; Xu, P.-F. Synlett 2016, 27, 1287;
(f) Wang, Y.; Liu, L.; Zhang, T.; Zhong, N.-J.; Wang, D.; Chen, Y.-J. J.
Org. Chem. 2012, 77, 4143.
Scheme 4. Unusual reaction of 1k.
In summary, various spirooxindoles bearing 2,3-(or 2,5-
)dihydrothiophene-2-thione moiety have been synthesized via
[3+2] annulation reaction of carbon disulfide and the nitrogen
ylides derived from Morita-Baylis-Hillman carbonates of isatins.
The ratio of two regioisomeric spirooxindoles could be
controlled by the steric hindrance around the corresponding
nitrogen ylides.20
Acknowledgments
This work was supported by National Research Foundation of
Korea (NRF) grant funded by the Korea government (NRF-
2015R1A4A1041036). Spectroscopic data were obtained from
the Korea Basic Science Institute, Gwangju branch.
9. For synthetic applications of nitrogen ylides derived from MBH
adducts of isatin, see: (a) He, Q.; Du, W.; Chen, Y.-C. Adv. Synth.
Catal. 2017, 359, 3782; (b) Wang, K.-K.; Du, W.; Zhu, J.; Chen, Y.-C.
Chin. Chem. Lett. 2017, 28, 512; (c) Zhan, G.; Shi, M.-L.; He, Q.; Lin,
W.-J.; Ouyang, Q.; Du, W.; Chen, Y.-C. Angew. Chem. Int. Ed. 2016,
55, 2147; (d) Ran, G.-Y.; Wang, P.; Du, W.; Chen, Y.-C. Org. Chem.
Front. 2016, 3, 861; (e) Wang, K.-K.; Wang, P.; Ouyang, Q.; Du, W.;
Chen, Y.-C. Chem. Commun. 2016, 52, 11104; (f) Peng, J.; Ran, G.-Y.;
Du, W.; Chen, Y.-C. Synthesis 2015, 47, 2538; (g) Jiang, K.; Chen, Y.-
C. Tetrahedron Lett. 2014, 55, 2049; (h) Peng, J.; Huang, X.; Jiang, L.;
Cui, H.-L.; Chen, Y.-C. Org. Lett. 2011, 13, 4584; (i) Fan, X.; Yang,
H.; Shi, M. Adv. Synth. Catal. 2017, 359, 49; (j) Wei, F.; Huang, H.-Y.;
Zhong, N.-J.; Gu, C.-L.; Wang, D.; Liu, L. Org. Lett. 2015, 17, 1688;
(k) Zhong, N.-J.; Wei, F.; Xuan, Q.-Q.; Liu, L.; Wang, D.; Chen, Y.-J.
Chem. Commun. 2013, 49, 11071; (l) Liu, Y.-L.; Wang, X.; Zhao, Y.-
L.; Zhu, F.; Zeng, X.-P.; Chen, L.; Wang, C.-H.; Zhao, X.-L.; Zhou, J.
Angew. Chem. Int. Ed. 2013, 52, 13735; (m) Viswambharan, B.;
Selvakumar, K.; Madhavan, S.; Shanmugam, P. Org. Lett. 2010, 12,
2108.
Supplementary data
Supplementary data associated with this article can be found,
in the online version, at xxxxxxxxxxxx.
References and notes
1. For reviews on spirooxindoles, see: (a) Ye, N.; Chen, H.; Wold, E. A.;
Shi, P.-Y.; Zhou, J. ACS Infect. Dis. 2016, 2, 382; (b) Yu, B.; Yu, D.-
Q.; Liu, H.-M. Eur. J. Med. Chem. 2015, 97, 673; (c) Santos, M. M. M.
Tetrahedron 2014, 70, 9735; (d) Cheng, D.; Ishihara, Y.; Tan, B.;
Barbas, C. F., III ACS Catal. 2014, 4, 743; (e) Hong, L.; Wang, R. Adv.
Synth. Catal. 2013, 355, 1023; (f) Singh, G. S.; Desta, Z. Y. Chem. Rev.
2012, 112, 6104; (g) Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Org.
Biomol. Chem. 2012, 10, 5165; (h) Trost, B. M.; Brennan, M. K.
Synthesis 2009, 3003; (i) Marti, C.; Carreira, E. M. Eur. J. Org. Chem.
2003, 2209; (j) Moradi, R.; Ziarani, G. M.; Lashgari, N. Arkivoc 2017,
i, 148; (k) Ziarani, G. M.; Moradi, R.; Lashgari, N. Arkivoc 2016, i, 1.
2. For our recent synthesis of spirooxindoles, see: (a) Min, B. K.; Seo, D.
Y.; Ryu, J. Y.; Lee, J.; Kim, J. N. Bull. Korean Chem. Soc. 2018, 39,
115; (b) Roh, H. J.; Seo, D. Y.; Ryu, J. Y.; Lee, J.; Kim, J. N.
10. Naito, T.; Nagase, S.; Yamataka, H. J. Am. Chem. Soc. 1994, 116,
10080.
11. The synthesis of 3a has been examined by thionation reaction of
spirooxindole F (Fig. 1)5a with Lawesson’s reagent (LR) in refluxing
toluene. Spirooxindole 3a was produced in low yield (9%); however,