Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC01136A
COMMUNICATION
Journal Name
and 17.3 cm3/g at 273 K and 1 atm (Fig. S17), respectively. Such
adsorption possibly enhances the concentration of CO2 around
[CuxIy] clusters, which maybe accounts for the divergence of
catalytic active between I and II due to the higher CO2 adsorption
capacity of II than I.
[2] J. Y. Lee, O. K. Farha, J. Roberts , K. A. Scheidt, S. T. Nguyen and J. T.
Hupp.Chem. Soc. Rev.2009, 38, 1450.
[3] M. Yoon, R.Srirambalaji and K. Kim.Chem. Rev.2012, 112(2), 1196.
[4]H. Furukawam, K. E. Cordova, M. ÓKeeffe and O. M.Yaghi.Science, 2013,
341, 974.
[5](a)W.‐Y.Gao,Y. Chen,Y.‐H. NiuK. Williams, L. Cash,P. J. Perez,L. Wojtas, J.
‐F. Cai, Y.‐S.Chenand S. ‐Q. Ma.Angew.Chem. Int. Ed.2014, 53, 2615.(b) J.
Dong, P. Cui, P.‐F.Shi P. Cheng and B. Zhao, J. Am. Chem. Soc., 2015, 137
(51), 15988. (c) H.‐M. He, J. ‐A. Perman, G. ‐S. Zhu, S. ‐Q. Ma, Small,
2016, 12, 6309..
[6] Z. ‐G. Guo, R. Cao, X. Wang, H. ‐FLi, W. ‐B. Yuan, G. ‐J. Wang, H. ‐H.
Wuand J. Li.J. Am. Chem. Soc. 2009, 131, 6894.
[7] M. H. Beyzavi, R. C. Klet, S. Tussupbayev, J. Borycz, N. A. Vermeulen, C. J.
Cramer, J. F. Stoddart, J. T. Huppand O. K. Farha.J. Am. Chem. Soc.2014,
136, 15861.
[8] P. V. Dauand S. M. Cohen.Chem. Commun.2013,49, 6128.
[9] D. ‐Y. Hong, Y. K. Hwang, C. Serre, G. Férey and J.‐S. Chang.Adv. Funct.
Mater.2009. 19, 1537.
In summary, two unique cluster‐based d‐f heterometallic 3D
frameworks (I and II) were synthesized and structurally
characterized. They display high solvent and thermal stabilities.
Clusters [Cu12I12] in I and [Cu3I2] in II serve not only as building
blocks of 3D frameworks but also as active catalytic centers.
Interestingly, both of them exhibited excellent catalytic
performance in the carboxylation reaction of 14 types of terminal
alkynes with 1 atm of CO2 under mild reaction conditions. Under
catalyzing of I or II, the terminal alkynes with electron‐withdrawing
orelectron‐donating substituents worked well in this protocol.
Importantly, I and II as efficient heterogeneous catalysts for the
carboxylation reaction of terminal alkynes and CO2 could open a
wide space in the chemical conversion field of CO2 to valuable
chemicals and materials. To the best of our knowledge, it is the first
time for MOFs materials to directly catalyze the carboxylation
reaction of terminal alkynes and CO2 under mild condition without
loading other catalysts.
[10] S. Bhattacharjee, D.‐A.Yang and W. ‐S.Ahn.Chem. Commun.2011, 47,
3637.
[11] S. Horike, M. Dincǎ , K. Tamaki and J. R. Long.J. Am. Chem. Soc. 2008,
130, 5854.
[12] Z. ‐J. Zhang, L. ‐P. Zhang, L. Wojtas, M. Eddaoudi and M. J. Zaworotko.J.
Am. Chem. Soc. 2012, 134, 928.
[13] T. ‐B. Liao, Y. Ling, Z. ‐X. Chen, Y. ‐M. Zhou and L. ‐H. Weng. Chem.
Commun.2010, 46, 1100.
[14] D. ‐B. Dang , P. ‐Y. Wu , C. He, Z. Xie and C. ‐Y. Duan.J. Am. Chem. Soc.
2010, 132, 14321.
A mixture of 0.5 mmol CuI, 0.5 mmol [15] F. Gándara, B. Gomez‐Lor, E. Gutiérrez‐Puebla, M. Iglesias, M. A. Monge,
Experimental Section
Synthesis of I.
D. M. Proserpio and N. Snejko. Chem. Mater. 2008, 20, 72.
[16] L. Alaerts, E. Séguin, H. Poelman, F. Thibault‐Starzyk, P. A. Jacobs and D.
E. DeVos.Chem. Eur. J. 2006,12, 7353.
[17] C. Wang, J.‐L.Wang and W. ‐B. Lin.J. Am. Chem. Soc.2012, 134, 19895.
[18] M.Savonnet,S. Aguado, U. Ravon, D. Bazer‐Bachi,V. Lecocq,N. Bats,C.
Pinel and D. Farrusseng.Green Chem. 2009, 11, 1729
[19] E. Pérez‐Mayoral and J. Čejka1.ChemCatChem.2011,3, 157.
[20] S. Hasegawa, S.Horike , R. Matsuda, S. Furukawa, K. Mochizuki, Y.
Kinoshitaand S. Kitagawa.J. Am. Chem. Soc.2007, 129, 2607.
[21] Y. ‐K. Hwang, D. ‐Y. Hong, J. ‐S. Chang, S. H. Jhung, Y. K. Seo1, J. Kim, A.
Vimont, M. Daturi, C. Serre and G. Férey. Angew.Chem. Int. Ed.2008,47,
4144.
[22] (a) J. ‐L. Song,Z. F. Zhang, S. Q. Hu, T. ‐B. Wu, T. Jiangand B. ‐X. Han.
Green Chem.2009, 11, 1031; (b) W.‐Y.Gao, H. ‐F. Wu, K.‐Y. Leng, Y. ‐Y.
Sun S. ‐Q. Ma. Angew Chem. Int. Ed., 2016, 55, 5472
[23] (a) D. ‐W. Feng , W. ‐C. Chung , Z. W. Wei, Z. ‐Y. Gu, H. ‐L. Jiang, Y. ‐P.
Chen, D. J. Darensbourgand H. ‐C. Zhou.J. Am. Chem. Soc.2013, 135,
17105;(b) W.‐Y.Gao, K. ‐Y. Leng, L. Cash, M. Chrzanowski, C. ‐A.
Stackhouse, Y. ‐Y. Sun and S. ‐Q. Ma. Chem. Commun., 2015, 51, 4827
[24] J. ‐L. Wang, C. Wangand W. ‐BLin.ACS Catal.2012,2, 2630.
[25] X. ‐H. Liu, J.‐G.Ma,Z.Niu,G.‐M.Yangand P. Cheng.Angew.Chem. Int.
Ed.2015, 54, 988.
[26] D. ‐Y. Yu and Y. ‐G.Zhang. PNAS2010, 107, 20184.
[27] F.Manjolinho, M. Arndt, K. GooßenandL. J. Gooßen.ACS Catal.2012, 2,
2014.
[28] D. ‐Y. Yu, M.‐X. Tanand Y. ‐G. Zhang. Adv. Synth. Catal.2012,354, 969.
[29] W. L. Wang,G. D. Zhang,R. Lang,C. G. Xiaand F. ‐W. Li .Green Chem.2013,
15, 635.
[30] B. Zhao , X.‐Y.Chen , P. Cheng, D. ‐Z. Liao , S.‐P.Yanand Z.‐H.Jiang.J. Am.
Chem. Soc.2004,126, 15394.
Gd(NO3)3∙6H2O, 0.5 mmol isonicotinic acid and 10 mL DMF was
sealed in a Teflon lined stainless steel container and heated at 125
for 24 h, and then cooled slowly controlled procedures to room
temperature during 24 h. Finally, light green block crystals were
collected with a yield of about 60% (based on CuI).Anal. Calcd. for
C65H56.5Cu4Gd4I3N11.5O29 (%): C: 34.02, H: 2.48, N: 7.02. Found:
C:33.98, H: 2.46, N: 6.99.
Syntheses of II.A mixture of 0.5 mmol CuI, 0.5 mmol Gd2O3, 1
mmol isonicotinic acid, 10 mL DMF (N, N‐Dimethylformamide) and
160 μL HNO3was sealed in a Teflon lined stainless steel container
and heated at 155 for 96 h, and then cooled slowly controlled
procedures to room temperature during 96 h. Finally, light yellow
block crystals were collected with a yield of 71% (based on CuI).
Anal. Calcd. for C69H71Cu12Gd3I12N14O23 (%): C:19.59, H: 1.65, N: 4.60
;Found:C: 19.63, H: 1.70, N: 4.64.
General procedure for the carboxylation of terminal alkynes
with CO2.In a 20 mL Schlenk flask, terminal alkyne (1.0 mmol),
Cs2CO3 (0.391 g, 1.2 mmol), indicated amount of catalyst, n‐BuI
(0.221 g, 1.2 mmol) and ethylene carbonate (3 mL) were added. The
flask was capped with a stopper and sealed. Then the freeze‐pump‐
thaw method was employed for gas exchanging process. The
reaction mixture was stirred at 80 oC for desired time under the
atmosphere of CO2 (99.999%, balloon). After the reaction, the
mixture was cooled to room temperature, extracted with n‐hexane.
The combined organic layers were washed with saturated NaCl
solution then dried with anhydrous Na2SO4. The residue was
purified by column chromatography (silica gel, petroleum
ether/EtOAc) to afford the desired product alkyl 2‐alkynoates.The
products were further identified by NMR and MS (see the
Supporting Information), which are consistent with those reported in
the literature and in good agreement with the assigned structures.
[31]B. Zhao, P. Cheng, Y. Dai, C. Cheng, D.‐Z.Liao, S. ‐P. Yan, Z. ‐H. Jiangand G.
‐L. Wang.Angew.Chem. Int. Ed. 2003, 42,934.
[32] B. Yu,Z. ‐F. Diao, C. ‐X.Guo,C.‐L.Zhong, L. ‐N.He,Y. ‐NZhao,Q. ‐W. Song,
A.‐H.Liuand J. ‐Q. Wang.Green Chem. 2013, 15, 2401.
[33] J.‐W. Cheng, J. Zhang, S.‐T.Zhengand G.‐Y.Yang.Chem. Eur. J.2008, 14,
88.
[34] S. P. Vanderand Spek A. L.ActaCrystallogr., Sect. A64: Found.
Crystallogr., 1990, 194.
[35] Y.‐L. Hou, G. Xiong,P. ‐F. Shi,R. ‐R. Cheng,J.‐Z. Cuiand B. Zhao.Chem.
Commun.2013, 49, 6066
Notes and references
[1] D. Farrusseng, S. Aguado and C. Pinel. Angew.Chem. Int. Ed.2009, 48,
7502.
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins