RESEARCH
| REPORT
putative active catalyst, to form the diazide in
synthetically useful yield, with no evidence of
side reactions involving the electrophilic carbon
radical (e.g, electroreduction, addition to alkene
49a, or hydrogen-atom abstraction from a labile
C–H bond in the reaction system).
ality and high functional group compatibility of
our system.
29. H.-C. Xu, K. D. Moeller, J. Am. Chem. Soc. 130, 13542–13543
(2008).
30. A. Kirste, G. Schnakenburg, F. Stecker, A. Fischer, S. R. Waldvogel,
Angew. Chem. Int. Ed. 49, 971–975 (2010).
31. T. Morofuji, A. Shimizu, J. Yoshida, J. Am. Chem. Soc. 135,
5000–5003 (2013).
32. B. R. Rosen, E. W. Werner, A. G. O’Brien, P. S. Baran,
J. Am. Chem. Soc. 136, 5571–5574 (2014).
33. E. J. Horn et al., Nature 533, 77–81 (2016).
34. A. Badalyan, S. S. Stahl, Nature 535, 406–410 (2016).
35. P. Xiong, H.-H. Xu, H.-C. Xu, J. Am. Chem. Soc. 139,
2956–2959 (2017).
We anticipate that this synthetic protocol
will enhance chemists’ access to a diverse array
of 1,2-diamines. From a broader perspective,
we envision that this catalytic electrochemical
strategy and the radical transformations that
it enables will prove widely applicable in both
modern synthetic chemistry and pharmaceutical
research.
We propose two plausible mechanisms for the
diazidation. In the first scenario (Fig. 1C), direct
oxidation of N3– to N3·, followed by its addition
to the alkene and subsequent azidyl transfer from
MnIII–N3, leads to the final product. Alternatively,
Mn-assisted delivery of both equivalents of N3· to
the olefin (Fig. 4B) completes diazidation. In either
case, we propose that the key group transfer agent,
MnIII–N3, forms through ligand exchange from
MnII–X (X, Br or OAc) to MnII–N3 and subse-
quent anodic oxidation. Voltammetric and spec-
trophotometric studies substantiated the dual
36. L. J. Li et al., J. Org. Chem. 80, 11021–11030 (2015).
37. H. Schäfer, Angew. Chem. Int. Ed. Engl. 9, 158–159
(1970).
REFERENCES AND NOTES
1. D. Lucet, T. Le Gall, C. Mioskowski, Angew. Chem. Int. Ed. 37,
2580–2627 (1998).
2. F. Cardona, A. Goti, Nat. Chem. 1, 269–275 (2009).
3. H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev.
94, 2483–2547 (1994).
4. A. O. Chong, K. Oshima, K. B. Sharpless, J. Am. Chem. Soc. 99,
3420–3426 (1977).
5. P. N. Becker, M. A. White, R. G. Bergman, J. Am. Chem. Soc.
102, 5676–5677 (1980).
6. D. E. Olson, J. Y. Su, D. A. Roberts, J. Du Bois, J. Am. Chem. Soc.
136, 13506–13509 (2014).
7. K. Muñiz, L. Barreiro, R. M. Romero, C. Martínez, J. Am. Chem. Soc.
139, 4354–4357 (2017).
8. B. Zhang, A. Studer, Org. Lett. 16, 1790–1793 (2014).
9. Y. Zhu, R. G. Cornwall, H. Du, B. Zhao, Y. Shi, Acc. Chem. Res.
47, 3665–3678 (2014).
38. R. Francke, R. D. Little, Chem. Soc. Rev. 43, 2492–2521
(2014).
39. F. Wang, X. Qi, Z. Liang, P. Chen, G. Liu, Angew. Chem. Int. Ed.
53, 1881–1886 (2014).
40. R. Zhu, S. L. Buchwald, J. Am. Chem. Soc. 137, 8069–8077
(2015).
41. A. Sharma, J. F. Hartwig, Nature 517, 600–604 (2015).
42. E. K. Leggans, T. J. Barker, K. K. Duncan, D. L. Boger, Org. Lett.
14, 1428–1431 (2012).
43. X. Huang, T. M. Bergsten, J. T. Groves, J. Am. Chem. Soc. 137,
5300–5303 (2015).
44. J. Waser, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 127,
8294–8295 (2005).
45. S. J. David, R. D. Coombe, J. Phys. Chem. 90, 3260–3263
(1986).
–
catalytic cycle shown in Fig. 4B. In MeCN, N3
exhibited an irreversible oxidative wave at ~0.5 V,
which shifted positively to 0.84 V on the addition
of HOAc, owing to protonation. MnII alone dis-
played no redox features between 0 and 1.5 V, but
–
on the addition of N3 and HOAc, a series of ir-
reversible anodic events appeared with an onset
potential of ~0.5 V. We assigned these waves to
the oxidation of azide-bound MnII, because this
anionic ligand is known to stabilize the MnIII oxi-
dation state (46). Preliminary ultraviolet-visible
spectroscopy data (figs. S4 to S5) also suggested
that MnII–N3 formed when N3– and MnII were
mixed and was subsequently oxidized to MnIII–N3
at a cell potential of 2.3 V, with a characteristic
ligand-to-metal charge-transfer transition at
422 nm (46). Taken together, the data favor
predominance of Mn-assisted dual radical group
transfer over direct addition of anodically
generated N3· to the alkene. The unusual com-
bination of exceptional reactivity and excellent
chemoselectivity observed in this catalytic sys-
tem likely originated from the putative azidyl
transfer agent, MnIII–N3. In a manner reminis-
cent of metal-oxo radical chemistry (47), the
redox-active metal catalyst enabled the gen-
eration of an azidyl equivalent in a controlled
fashion as a Mn-bound complex, preserving
the radical character needed to induce C=C
p-bond homolysis while diminishing the high
propensity of N3· to undergo dimerization,
C–H or electron abstraction, and other side re-
actions. This feature, together with the granular
control of oxidizing potential granted by elec-
trochemistry, led to the broad substrate gener-
46. C. Baffert, H. Chen, R. H. Crabtree, G. W. Brudvig, M.-N. Collomb,
J. Electroanal. Chem. 506, 99–105 (2001).
47. J. M. Mayer, Acc. Chem. Res. 31, 441–450 (1998).
10. B. Simmons, A. M. Walji, D. W. C. MacMillan, Angew. Chem. Int. Ed.
48, 4349–4353 (2009).
11. F. Minisci, Acc. Chem. Res. 8, 165–171 (1975).
12. W. E. Fristad, T. A. Brandvold, J. R. Peterson, S. R. Thompson,
J. Org. Chem. 50, 3647–3649 (1985).
13. Y.-A. Yuan, D.-F. Lu, Y.-R. Chen, H. Xu, Angew. Chem. Int. Ed.
55, 534–538 (2016).
14. H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed.
40, 2004–2021 (2001).
15. F. Palacios, C. Alonso, D. Aparicio, G. Rubiales, J. M. de los Santos,
Tetrahedron 63, 523–575 (2007).
16. C. I. Schilling, N. Jung, M. Biskup, U. Schepers, S. Bräse,
Chem. Soc. Rev. 40, 4840–4871 (2011).
17. E. T. Hennessy, T. A. Betley, Science 340, 591–595 (2013).
18. S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed.
44, 5188–5240 (2005).
19. K. D. Moeller, Tetrahedron 56, 9527–9554 (2000).
20. J. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev.
108, 2265–2299 (2008).
21. E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2, 302–308
(2016).
22. B. H. Nguyen, A. Redden, K. D. Moeller, Green Chem. 16, 69–72
(2014).
23. D. M. Schultz, T. P. Yoon, Science 343, 1239176 (2014).
24. T. Shono, N. Kise, T. Suzumoto, T. Morimoto, J. Am. Chem. Soc.
108, 4676–4677 (1986).
25. K. D. Moeller, M. R. Marzabadi, D. G. New, M. Y. Chiang,
S. Keith, J. Am. Chem. Soc. 112, 6123–6124 (1990).
26. R. D. Little, M. K. Schwaebe, Top. Curr. Chem. 185, 1–48
(1997).
ACKNOWLEDGMENTS
The authors declare no competing financial interests. Complete
experimental and characterization data are provided in the
supplementary materials. Financial support was provided by
Cornell University. This study made use of the Cornell Center for
Materials Research Shared Facilities, supported by the NSF
MRSEC (Materials Research Science and Engineering Centers)
program (grant DMR-1120296), and a nuclear magnetic
resonance facility supported by the NSF (grant CHE-1531632).
G.S.S. is grateful for an NSF Graduate Fellowship (DGE-
1650441). We thank K. L. Carpenter and W. Hao for providing
substrates 19a and 43a, respectively; K. M. Lancaster for access
to an ultraviolet-visible spectrometer; and D. B. Collum and
B. Ganem for assistance with manuscript preparation. S.L., N.F.,
and G.S.S. are inventors on U.S. patent application 62/513,646
submitted by Cornell University that covers the electrochemical
alkene diazidation.
SUPPLEMENTARY MATERIALS
Materials and Methods
Figs. S1 to S6
Tables S1 and S2
Spectral Data
References (48–63)
27. K. Chiba, T. Miura, S. Kim, Y. Kitano, M. Tada, J. Am. Chem. Soc.
123, 11314–11315 (2001).
28. J. B. Sperry, D. L. Wright, J. Am. Chem. Soc. 127, 8034–8035
(2005).
13 May 2017; accepted 11 July 2017
10.1126/science.aan6206
Fu et al., Science 357, 575–579 (2017)
11 August 2017
5 of 5