Journal of the American Chemical Society
Communication
a
configurations of the products were controlled only by the
employed reaction procedure. The proposed reaction protocols
are particularly valuable for catalysts derived from chiral natural
products, including cinchona alkaloids, since these compounds
are available in only one enantiomeric form. Studies to clarify
the enantioselectivity switch in further detail and the
application of this methodology to other asymmetric reactions
are currently underway in our laboratory, and the results will be
reported in due course.
Table 2. Substrate Scope
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures, including spectroscopic and analytical
data. This material is available free of charge via the Internet at
■
S
b
entry
R (3)
Ph (3a)
procedure yield (%)
er
AUTHOR INFORMATION
Corresponding Author
■
1
2
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
47
69
67
49
79
71
95
74
27
19
66
49
53
53
83
73
73
30
88.5:11.5 (R)
13:87 (S)
c
3
4-CH3OC6H4 (3b)
4-CF3C6H4 (3c)
4-BrC6H4 (3d)
4-PhC6H4 (3e)
2-naphthyl (3f)
2-thienyl (3g)
PhCH2CH2 (3h)
PhO (3i)
73:27 (R)
c
4
25.5:74.5 (S)
80.5:19.5 (R)
6.5:93.5 (S)
81:19 (R)
c
Notes
5
c
The authors declare no competing financial interest.
6
7
8
ACKNOWLEDGMENTS
This work was supported financially by the Japanese Ministry of
Education, Culture, Sports, Science and Technology.
■
14:86 (S)
9
89.5:10.5 (R)
15.5:84.5 (S)
91:9 (R)
10
11
12
13
14
15
16
REFERENCES
18:82 (S)
■
(1) (a) Cheng, P.; Lu, H.; Shelly, M.; Gao, H.; Poo, M. Neuron 2011,
69, 231. (b) Rominger, C. M.; Schaber, M. D.; Yang, J.; Gontarek, R.
R.; Weaver, K. L.; Broderick, T.; Carter, L.; Copeland, R. A.; May, E.
W. Arch. Biochem. Biophys. 2007, 464, 130.
81.5:18.5 (R)
16.5:83.5 (S)
68:32 (R)
17.5:82.5 (S)
55:45 (R)
(2) (a) Catalytic Asymmetric Synthesis, 3rd ed.; Ojima, I., Ed; Wiley:
Hoboken, NJ, 2010. (b) Comprehensive Asymmetric Catalysis; Jacobsen,
E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999; Vols.
I−III. (c) Asymmetric Catalysis in Organic Synthesis; Noyori, R., Ed;
Wiley: New York, 1994.
(3) For reviews of enantioselectivity switches using a single chiral
source, see: (a) Zanoni, G.; Castronovo, F.; Franzini, M.; Vidari, G.;
Giannini, E. Chem. Soc. Rev. 2003, 32, 115. (b) Tanaka, T.; Hayashi,
d
17
d
18
88:12 (R)
a
Reactions were run using 1 (0.253 mmol), 2a (0.25 mmol), and 4a
b
c
(0.0125 mmol) in toluene. Isolated yields. Run at −20 °C for 48 h.
d
Run at 15 °C for 120 h.
Scheme 4. Deprotection of 3a
M. Synthesis 2008, 3361. (c) Bartok
(4) For selected recent examples of enantiodivergent organocatalytic
syntheses using a single chiral source, see: (a) Mazon, P.; Chinchilla,
R.; Najera, C.; Guillena, G.; Kreiter, R.; Gebbink, R. J. M. K.; van
́
, M. Chem. Rev. 2010, 110, 1663.
́
́
Koten, G. Tetrahedron: Asymmetry 2002, 13, 2181. (b) Sohtome, Y.;
Tanaka, S.; Takada, K.; Yamaguchi, T.; Nagasawa, K. Angew. Chem.,
Int. Ed. 2010, 49, 9254. (c) Hua, M.-Q.; Cui, H.-F.; Wang, L.; Nie, J.;
Ma, J.-A. Angew. Chem., Int. Ed. 2010, 49, 2772. (d) Yamamoto, T.;
Suzuki, Y.; Ito, E.; Tokunaga, E.; Shibata, N. Org. Lett. 2011, 13, 470.
(e) Alix, A.; Lalli, C.; Retailleau, P.; Masson, G. J. Am. Chem. Soc. 2012,
134, 10389. (f) Chen, S.-H.; Hong, B.-C.; Su, C.-F.; Sarshar, S.
Tetrahedron Lett. 2005, 46, 8899. (g) Abermil, N.; Masson, G.; Zhu, J.
Scheme 5. Synthesis of Chiral 1,2-Amino Alcohol 6
̌ ́ ̌
Org. Lett. 2009, 11, 4648. (h) Ivsic, T.; Hamersak, Z. Tetrahedron:
Asymmetry 2009, 20, 1095. (i) Moteki, S. A.; Han, J.; Arimitsu, S.;
Akakura, M.; Nakayama, K.; Maruoka, K. Angew. Chem., Int. Ed. 2012,
51, 1187. (j) Garzan, A.; Jaganathan, A.; Marzijarani, N. S.; Yousefi, R.;
Whitehead, D. C.; Jackson, J. E.; Borhan, B. Chem.Eur. J. 2013, 19,
9015. (k) Nakayama, K.; Maruoka, K. J. Am. Chem. Soc. 2008, 130,
17666. (l) Kano, T.; Yamamoto, A.; Shirozu, F.; Maruoka, K. Synthesis
2009, 1557. (m) Terada, M.; Yokoyama, S.; Sorimachi, K.; Uraguchi,
D. Adv. Synth. Catal. 2007, 349, 1863. (n) Wang, J.; Feringa, B. L.
Science 2011, 331, 1492.
(5) For reviews, see: (a) Barbachyn, M. R.; Ford, C. W. Angew.
Chem., Int. Ed. 2003, 42, 2010. (b) Jin, Z. Nat. Prod. Rep. 2003, 20,
584. (c) Mukhtar, T. A.; Wright, G. D. Chem. Rev. 2005, 105, 529.
(d) Jin, Z. Nat. Prod. Rep. 2006, 23, 464.
determined by comparing its optical rotation with the literature
value17 (see the SI for details), and the configurations of all
other products were assigned analogously.
In summary, we have presented a novel enantioselective
route to 2-oxazolidinones via formal [3 + 2] cycloadditions
between γ-hydroxy-α,β-unsaturated carbonyls and an isocya-
nate in the presence of a cinchona-alkaloid-derived amino-
thiourea catalyst. Notably, the two enantiomers could be
synthesized selectively without changing the reaction compo-
nents (chiral catalyst, substrates, and solvent). The absolute
C
dx.doi.org/10.1021/ja407027e | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX