Page 7 of 22
Journal of the American Chemical Society
nov, A. V.; Dubonosov, A. D.; Bren, V. A.; Minkin, V. I. Chem. Hetero-
Supporting Information. Complete experimental details. UV data
1
2
3
4
cycl. Comp. 2008, 44, 899–923. f) Cho, D.-G.; Sessler, J. L. Chem. Soc.
Rev. 2009, 38, 1647–1662. g) Formica, M.; Fusi, V.; Giorgi, L.; Miche-
loni, M. Coord. Chem. Rev. 2012, 256, 170–192. h) Li, X.; Gao, X.; Shi,
W.; Ma, H. Chem. Rev. 2014, 114, 590–659.
for 1a and pyrene. Crystallographic data for (±)-1a and (S)-1a.
Details of computational methods. 1H and 13C NMR spectra for all
new compounds. This material is available free of charge via the
2. For overviews of PET-based fluorescent chemosensors, see: a)
Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.;
Maguire, G. E. M.; McCoy, C. P.; Sandanayake, K. R. A. S. Top. Curr.
Chem. 1993, 168, 223-264. b) de Silva, A. P.; Uchiyama, S. Top. Curr.
Chem. 2011, 300, 1-28. For an overview of ICT signaling, and other
approaches, see: c) Demchenko, A. P. Introduction to Fluorescence
Sensing; Springer Science: London, 2009; Chapter 6; see also ref. 1.
3. For rare examples of oxygen as the reporting element in fluo-
rescent chemosensors, see: a) Sousa, L. R.; Larson, J. M. J. Am. Chem.
Soc. 1977, 99, 307–310. b) De Silva, A. P.; Sandanayake, K. R. A. S. J.
Chem. Soc., Chem. Commun. 1989, 1183-1185. c) Wallace, K. J.;
Fagbemi, R. I.; Folmer-Andersen, F. J.; Morey, J.; Lynth, V. M.; Anslyn,
E. V. Chem. Commun. 2006, 3886–3888.
4. For fluorescent probes based on phosphorus oxidation, see: a)
Akasaka, K.; Suzuki, T.; Ohrui, H.; Meguro, H. Anal. Lett. 1987, 20,
731−745. b) Lemieux, G. A.; de Graffenried, C. L.; Bertozzi, C. R. J. Am.
Chem. Soc. 2003, 125, 4708–4709. c) Onoda, M.; Uchiyama, S.; Endo,
A.; Tokuyama, H.; Santa, T.; Imai, K. Org. Lett. 2003, 5, 1459–1461. d)
Soh, N.; Sakawaki, O.; Makihara, K.; Odo, Y.; Fukaminato, T.; Kawai,
T.; Irie, M.; Imato, T. Bioorg. Med. Chem. 2005, 13, 1131–1139. e)
Onoda, M.; Tokuyama, H.; Uchiyama, S.; Mawatari, K.-I.; Santa, T.;
Kaneko, K.; Imai, K.; Nakagomi, K. Chem. Commun. 2005, 1848–1850.
f) Soh, N.; Ariyoshi, T.; Fukaminato, T.; Nakajima, H.; Nakano, K.;
Imato, T. Org. Biomol. Chem. 2007, 5, 3762–3768.
5. For fluorescent chemosensors based on sulfur manifested in a
thiourea moiety, see: a) Mello, J. V.; Finney, N. S. J. Am. Chem. Soc.
2005, 127,10124–10125. b) Malashikhin, S. A.; Baldridge, K. K.; Fin-
ney, N. S. Org. Lett. 2010,12, 940–943. c) Profatilova, I. A.; Bumber,
A. A.; Tolpygin, I. E.; Rybalkin, V. P.; Gribanova, T. N.; Mikhailov, I. E.
Russ. J. Gen. Chem. 2005, 75, 1774–1781. d) Tolpygin, I. E.; Shepelen-
ko, E. N.; Revinskii, Y. V.; Tsukanov, A. V.; Dubonosov, A. D.; Bren, V.
A.; Minkin, V. I. Russ. J. Gen. Chem. 2010, 80, 765–770. e) Li, X. L.; He,
Y. W.; Yang, S. I. Bull. Korean. Chem. Soc. 2011, 32, 338–340. f)
Vonlanthen, M.; Finney, N. S. J. Org. Chem. 2013, 78, 3980–3988. g)
Vonlanthen, M.; Connelly, C. M.; Deiters, A.; Linden, A.; Finney, N. S.
J. Org. Chem. 2014, 79, 6054–6060. For fluorescent probes relying on
the oxidation state of sulfur, see: h) Malashikhin, S.; Finney, N. S. J.
Am. Chem. Soc. 2008, 130, 12846–12847. i) Dane, E. L.; King, S. B.;
Swager, T. M. J. Am. Chem. Soc. 2010, 132, 7758–7768. j) Marom, H.;
Popowski, Y.; Antonov, S.; Gozin, M. Org. Lett. 2011, 13, 5532–5535.
6. For fluorescent probes relying on bonding with arsenic, see: a)
Griffin, B. A.; Adams, S. R.; Tsien, R. Y. Science 1998, 281, 269–272. b)
Adams, S. R.; Campbell, R. E.; Gross, L. A.; Martin, B. R.; Walkup, G.
K.; Yao, Y.; Llopis, J.; Tsien, R. Y. J. Am. Chem. Soc. 2002, 124, 6063–
6076. c) Scheck, R. A.; Schepartz, A. Acc. Chem. Res. 2011, 44, 654–
665.
5
6
7
8
AUTHOR INFORMATION
Corresponding Author
* Nathaniel S. Finney
School of Pharmaceutical Science and Technology
Tianjin University
92 Weijin Road, Nankai District
Tianjin, China, 300072
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Author Contributions
The manuscript was written based on the contributions of all
authors.
Funding Sources
We thank the Department of Chemistry (University of Zurich),
Research Priority Program LightChEC (University of Zurich), the
School of Pharmaceutical Science and Technology (Tianjin Uni-
versity), the National Basic Research Program of China
(2015CB856500), the Qian Ren Scholar Program of China, and the
Synergetic Innovation Center of Chemical Science and Engineer-
ing (Tianjin University) for financial support.
ACKNOWLEDGMENT
We thank Prof. Graham Bodwell (Memorial University of New-
foundland) for the generous gift of compound 7.
ABBREVIATIONS
CT state = charge transfer state
IC = internal conversion
ICT = intramolecular charge transfer
FRET = Förster resonant energy transfer
LE state = locally excited state
PE = potential energy
PES = photoelectron spectroscopy
PET = photoinduced electron transfer
TICT = twisted intramolecular charge transfer state
φf = fluorescence quantum yield
7. Kathayat, R. S.; Finney, N. S. J. Am. Chem. Soc. 2013, 135,
12612−12614.
8. For reviews on sulfoxide metal coordination, see: a) Calligaris,
M.; Carugo, O. Coord. Chem. Rev. 1996, 153, 83-154. b) Calligaris, M.
Coord. Chem. Rev. 2004, 248, 351-375.
9. The crystal structure of Mg2+•(H2O)2(DMSO)6 shows exclusive
coordination through the sulfoxide oxygen. See: Ullström, A.-S.;
Warminska, D.; Persson, I. J. Coord. Chem. 2005, 58, 611–622. In
addition, as noted in ref. 8b, sulfoxide S-coordination has only been
observed for late transition metals, and alkaline and alkaline earth
cation complexes have only been found in O-coordinated form.
10. a) Celebre, G.; Cinacchi, G.; De Luca, G.; Giuliano, B. M.; Iem-
ma, F.; Melandri, S. J. Phys. Chem. B, 2008, 112, 2095–2101. b) Bu-
chanan, G. W.; Reyes-Zamora, C.; Clarke, D. E. Can. J. Chem. 1974, 52,
3895–3904.
Φ
inv = total quantum yield for pyramidal inversion
REFERENCES
1. Reviews on fluorescence-based molecular probes: a) De Silva, A.
P.; Gunaratne, H. N.; Gunnlaugsson, T.; Huxley, A. J.; McCoy, C. P.;
Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566. b)
Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40. c) Bell, T. W.;
Hext, N. M. Chem. Soc. Rev. 2004, 33, 589-598. d) Callan, J. F.; De
Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551–8588. e) Tsuka-
ACS Paragon Plus Environment