ChemComm
Communication
´
52, 518; (e) E. P. Avila and G. W. Amarante, ChemCatChem, 2012,
indicating the underlying positive gem-dialkyl effect on the
reaction (entry 17).9
´
´
4, 1713; ( f ) A. Parra, S. Reboredo, A. M. Martın Castro and J. Aleman,
Org. Biomol. Chem., 2012, 10, 5001; (g) K. Brak and E. N. Jacobsen,
Angew. Chem., Int. Ed., 2013, 52, 534.
Overall, the trends deduced from Table 3 are opposite to those of
the classical approach. An important learning coming from this 5 Copper: (a) D. B. Llewellyn, D. Adamson and B. A. Arndtsen, Org. Lett.,
2000, 2, 4165; (b) D. B. Llewellyn and B. A. Arndtsen, Organometallics,
2004, 23, 2838; (c) D. B. Llewellyn and B. A. Arndtsen, Tetrahedron:
Asymmetry, 2005, 16, 1789; (d) B. Zhao, H. Du and Y. Shi, J. Org.
study is that the chiral counterion strategy can outperform the
classical one sometimes. The examples displayed in entries 1, 2,
8–10, 13, 14, 16 and 17 show that better enantioselectivities can be
reached mainly with alkoxylated isocyanates. In contrast, chlorinated
and sterically demanding alkyl isocyanate derivatives are relevant
choices when the classical method is implemented, as shown in
entries 5, 6, 11 and 12. The two methods are thus complementary.
In conclusion, we have performed the first asymmetric chiral
anion-directed transition metal-catalyzed [2+2+2] cycloaddition
reactions through the use of [Rh(I)][phosphate] system. This
transformation involves an axial (chiral anion) to axial (pyridone)
chirality transfer. Of particular interest, the chiral counterion
strategy proved complementary to the classical one involving
chiral bisphosphines, which emphasizes its relevance as an
alternative to chiral L-type ligands to induce enantioselectivity
in metal-catalyzed reactions. Studies aimed at characterizing the
intermediates involved and to gain insights into the mechanism
of this reaction are underway in our laboratory.
Chem., 2009, 74, 8392; (e) R. Yazaki, N. Kumagai and M. Shibasaki,
J. Am. Chem. Soc., 2010, 132, 10275. Palladium: ( f ) S. Mukherjee and
B. List, J. Am. Chem. Soc., 2007, 129, 11336; (g) G. Jiang and B. List,
Angew. Chem., Int. Ed., 2011, 50, 9471; (h) G. Jiang, R. Halder, Y. Fang
and B. List, Angew. Chem., Int. Ed., 2011, 50, 9752; (i) Z. Chai and
T. J. Rainey, J. Am. Chem. Soc., 2012, 134, 3615; ( j) M. Arthuis,
R. Beaud, V. Gandon and E. Roulland, Angew. Chem., Int. Ed., 2012,
51, 10510; (k) K. Ohmatsu, M. Ito, T. Kunieda and T. Ooi, Nat. Chem.,
2012, 4, 473; (l) K. Ohmatsu, M. Ito, T. Kunieda and T. Ooi, J. Am.
Chem. Soc., 2013, 135, 590. Gold: (m) G. L. Hamilton, E. J. Kang,
M. Mba and F. D. Toste, Science, 2007, 317, 496; (n) K. Aikawa,
M. Kojima and K. Mikami, Angew. Chem., Int. Ed., 2009, 48, 6073;
(o) R. L. Lalonde, Z. J. Wang, M. Mba, A. D. Lackner and F. D. Toste,
Angew. Chem., Int. Ed., 2010, 49, 598; (p) K. Aikawa, M. Kojima and
K. Mikami, Adv. Synth. Catal., 2010, 352, 3131; (q) A. K. Mourad,
J. Leutzow and C. Czekelius, Angew. Chem., Int. Ed., 2012, 51, 11149;
(r) M. Kojima and K. Mikami, Synlett, 2012, 57; (s) S. Gaillard, D. Rix,
A. M. Z. Slawin, J. Lacour and S. P. Nolan, Dalton Trans., 2012,
41, 8235. Ruthenium: (t) G. Jiang and B. List, Chem. Commun.,
2011, 47, 10022; (u) J. R. Zbieg, E. Yamaguchi, E. L. McInturff and
M. J. Krische, Science, 2012, 336, 324. Manganese: (v) S. Liao and
B. List, Angew. Chem., Int. Ed., 2010, 49, 628. Indium: (w) Y.-Y. Huang,
A. Chakrabarti, N. Morita, U. Schneider and S. Kobayashi, Angew.
Chem., Int. Ed., 2011, 50, 11121. Yttrium: (x) Y. Deng, L. Liu,
R. G. Sarkisian, K. Wheeler, H. Wang and Z. Xu, Angew. Chem., Int.
Ed., 2013, 52, 3663. Iron: (y) S. Liao and B. List, Adv. Synth. Catal.,
2012, 354, 2363. Iridium: (z) C. Li, C. Wang, B. Villa-Marcos and
J. Xiao, J. Am. Chem. Soc., 2008, 130, 14450; (aa) C. Li, B. Villa-Marcos
and J. Xiao, J. Am. Chem. Soc., 2009, 131, 6967; (bb) M. Barbazanges,
This work was supported by the CNRS, UPMC, IUF and
Agence Nationale de la Recherche (ANR-09-BLAN-108 SACCAOR)
which we gratefully acknowledge. We warmly thank Prof. Ken
Tanaka for a fruitful discussion about the generation of the
catalytic species.
Notes and references
´
M. Auge, J. Moussa, H. Amouri, C. Aubert, C. Desmarets, L. Fensterbank,
V. Gandon, M. Malacria and C. Ollivier, Chem.–Eur. J., 2011, 17, 13789;
(cc) M. Rueping and R. M. Koenigs, Chem. Commun., 2011, 47, 304;
(dd) W. Chen and J. F. Hartwig, J. Am. Chem. Soc., 2013, 135, 2068.
Rhodium: (ee) D. Chen, B. Sundararaju, R. Krause, J. Klankermayer,
P. H. Dixneuf and W. Leitner, ChemCatChem, 2010, 2, 55.
1 (a) Handbook of Cyclization Reactions, ed. S. Ma, Wiley-VCH, Wein-
heim, 2009, vol. 1; (b) [m+n+2] Carbocyclization Reactions C. Aubert,
M. Malacria and C. Ollivier, in Science of Synthesis: Stereoselective
Synthesis, ed. J. G. De Vries, G. Molander and P. A. Evans, 2011,
ch. 3.4, vol. 3, p. 145.
6 The use of a rhodium catalyst in the presence of chiral phosphoric
acid has also been reported by Krische and co-workers, see:
V. Komanduri and M. J. Krische, J. Am. Chem. Soc., 2006, 128, 16448.
7 (a) K. Tanaka, A. Wada and K. Noguchi, Org. Lett., 2005, 7, 4737;
(b) R. T. Yu and T. Rovis, J. Am. Chem. Soc., 2006, 128, 12370;
(c) K. Tanaka, Y. Takahashi, T. Suda and M. Hirano, Synlett, 2008,
1724; (d) E. E. Lee and T. Rovis, Org. Lett., 2008, 10, 1231; (e) R. T. Yu,
E. E. Lee, G. Malik and T. Rovis, Angew. Chem., Int. Ed., 2009, 48, 2379;
( f ) M. E. Oinen, R. T. Yu and T. Rovis, Org. Lett., 2009, 11, 4934;
(g) R. K. Friedman and T. Rovis, J. Am. Chem. Soc., 2009, 131, 10775;
(h) D. M. Dalton, K. M. Oberg, R. T. Yu, E. E. Lee, S. Perreault,
M. E. Oinen, M. L. Pease, G. Malik and T. Rovis, J. Am. Chem. Soc.,
2009, 131, 15717.
2 (a) V. Gandon, C. Aubert and M. Malacria, Chem. Commun., 2006, 2209;
(b) B. Heller and M. Hapke, Chem. Soc. Rev., 2007, 36, 1085; (c) N. Agenet,
O. Buisine, F. Slowinski, V. Gandon, C. Aubert and M. Malacria, Org.
React., 2007, 68, 1; (d) W. Hess, J. Treutwein and G. Hilt, Synthesis, 2008,
´
3537; (e) J. A. Varela and C. Saa, Synlett, 2008, 2571; ( f ) D. Leboeuf,
V. Gandon and M. Malacria, in Handbook of Cyclization Reactions, ed.
S. Ma, Wiley-VCH, Weinheim, 2009, vol. 1, p. 367; (g) K. Tanaka,
Chem.–Asian J., 2009, 4, 508; (h) B. R. Galan and T. Rovis, Angew. Chem.,
Int. Ed., 2009, 48, 2830; (i) P. A. Inglesby and P. A. Evans, Chem. Soc. Rev.,
´
´
2010, 39, 2791; ( j) G. Domınguez and J. Perez-Castells, Chem. Soc. Rev.,
2011, 40, 3430; (k) N. Weding and M. Hapke, Chem. Soc. Rev., 2011,
40, 4525; (l) Y. Shibata and K. Tanaka, Synthesis, 2012, 323; (m) D. L. J.
Broere and E. Ruijter, Synthesis, 2012, 2639.
8 The same reaction performed under double stereodifferentiating
conditions, in the presence of enantiomerically pure (R)-BINAP and
(S)-BINAP as the ligand, afforded pyridone 3aa in similar but opposite
62% (+) and 61% (ꢀ) ee, respectively.
3 K. Tanaka, Synlett, 2007, 1977.
4 For recent reviews, see: (a) J. Lacour and D. Moraleda, Chem. Com-
mun., 2009, 7073; (b) R. J. Phipps, G. L. Hamilton and F. D. Toste, Nat.
Chem., 2012, 4, 603; (c) M. Mahlau and B. List, Isr. J. Chem., 2012,
52, 630; (d) M. Mahlau and B. List, Angew. Chem., Int. Ed., 2013, 9 M. E. Jung and G. Piizi, Chem. Rev., 2005, 105, 1735.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.