10.1002/anie.201713333
Angewandte Chemie International Edition
COMMUNICATION
6762. e) B. Gopula, C.-W. Chiang, W.-Z. Lee, T.-S. Kuo, P.-Y. Wu, J. P.
Henschke, H.-L. Wu, Org. Lett. 2014, 16, 632. f) Z. Cui, Y.-J. Chen, W.-Y.
Gao, C.-G. Feng, G.-Q. Lin, Org. Lett. 2014, 16, 1016.
[5] a) S. L. Buchwald, B. T. Watson, M. W. Wannamaker, J. C. Dewan, J. Am.
Chem. Soc. 1989, 111, 4486. b) R. B. Grossman, W. M. Davis, S. L.
Buchwald, J. Am. Chem. Soc. 1991, 113, 2321. c) P. Wipf, C. Kendall, C.
R. J. Stephenson, J. Am. Chem. Soc. 2003, 125, 761.
[6] a) J.-R. Kong, C.-W. Cho, M. J. Krische, J. Am. Chem. Soc. 2005, 127,
11269. b) E. Skucas, J. R. Kong, M. J. Krische, J. Am. Chem. Soc. 2007,
129, 7242. c) A. Barchuk, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc.
2007, 129, 8432. d) M.-Y. Ngai, A. Barchuk, M. J. Krische, J. Am. Chem.
Soc. 2007, 129, 12644. e) C.-Y. Zhou, S.-F. Zhu, L.-X. Wang, Q.-L. Zhou,
J. Am. Chem. Soc. 2010, 132, 10955.
[7] a) S. J. Patel, T. F. Jamison, Angew. Chem. 2003, 115, 1402; Angew. Chem.
Int. Ed. 2003, 42, 1364. b) S. J. Patel, T. F. Jamison, Angew. Chem. 2004,
116, 4031; Angew. Chem. Int. Ed. 2004, 43, 3941.
Figure 1. DFT-computed Gibbs free energy changes of the
[Ni(PCy3)]-catalyzed hydroalkenyaltion of imine 2a with styrene.
[8] a) D. Basavaiah, A. J. Rao, T. Satyanarayana, Chem. Rev. 2003, 103, 811.
b) G. Masson, C. Housseman, J. Zhu, Angew. Chem. 2007, 119, 4698;
Angew. Chem. Int. Ed. 2007, 46, 4614. c) Y. Wei, M. Shi, Chem. Rev. 2013,
113, 6659.
Experimental Section
[9] Li, Y.; Zhang, X.-S.; Zhu, Q.-L.; Shi, Z.-J. Org. Lett. 2012, 14, 4498.
[10] For Pd-catalyzed vinylation of aminals, see: Y. Xie, J. Hu, Y. Wang, C. Xia,
H. Huang, J. Am. Chem. Soc. 2012, 134, 20613.
In an argon-filled glove-box, an oven-dried sealed tube was charged with a
stir bar, Ni(cod)2 (14 mg, 0.05 mmol), PCy3 (28 mg, 0.1 mmol), TsNH2 (0.05
mmol), alkene 1, (1.0 mmol) aldimine 2 (0.50 mmol) and toluene (1.0 mL). The
tube was then sealed with a Teflon-lined screw cap, removed from the glove
box, stirred at room temperature for 5 min and then 100 °C for 4 h. After being
cooled to room temperature, the mixture was added aqueous HCl (1 N, 0.1 mL)
and ethyl acetate, and filtered over a short plug of silica gel (ethyl acetate eluent).
The filtrate was concentrated in vacuo and the residue was purified by column
chromatography on silica gel (PE/EA = 8:1, v/v) to afford the corresponding
product.
[11] a) R.-R. Liu, D.-J. Wang, L. Wu, B. Xiang, G.-Q. Zhang, J.-R. Gao, Y.-X.
Jia, ACS Catal. 2015, 5, 6524. b) B. Xiang, T.-F. Xu, L. Wu, R.-R. Liu, J.-R.
Gao, Y.-X. Jia, J. Org. Chem. 2016, 81, 3929.
[12] a) J. Montgomery, Angew. Chem. 2004, 116, 3980; Angew. Chem. Int. Ed.
2004, 43, 3890. b) J. Montgomery, G. J. Sormunen, Top. Curr. Chem. 2007,
279, 1. c) C.-Y. Ho, K. D. Schleicher, C.-W. Chan, T. F. Jamison, Synlett
2009, 2565. d) Z. Zeng, D. Yang, Chin. J. Org. Chem. 2013, 33, 2131. e)
S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299. f) E. A.
Standley, S. Z. Tasker, K. L. Jensen, T. F. Jamison, Acc. Chem. Res. 2015,
48, 1503. g) Y. Hoshimoto, M. Ohashi, S. Ogoshi, Acc. Chem. Res. 2015,
48, 1746.
Acknowledgements
We thank the National Natural Science Foundation of China (Nos.
21421001, 21325207, 21421062, 21532003) for financial support.
[13] a) S.-S. Ng, T. F. Jamison, J. Am. Chem. Soc. 2005, 127, 14194. b) S.-S.
Ng, C.-Y. Ho, T. F. Jamison, J. Am. Chem. Soc. 2006, 128, 11513. c) C.-
Y. Ho, T. F. Jamison, Angew. Chem. 2007, 119, 796; Angew. Chem. Int.
Ed. 2007, 46, 782.
Keywords: Nickel Catalyst • hydroalkenylation • Imine• Alkene •
[14] L.-J. Xiao, X.-N. Fu, M.-J. Zhou, J.-H. Xie, L.-X. Wang, X.-F. Xu, Q.-L. Zhou,
J. Am. Chem. Soc. 2016, 138, 2957.
Allylic Amine
[15] Isomerization of homoallylic amines to allylic amines was observed under
the standard reaction conditions (see SI, Scheme S6).
[1] a) G. Petranyi, N. S. Ryder, A. Stűtz, Science 1984, 224, 1239. b) R. C.
Schnur, M. L. Corman, J. Org. Chem. 1994, 59, 2581. c) M. B. Haidoune,
I. Raynaud, N. O'Connor, P. Richomme, R. Mornet, M. Laloue, J. Agric.
Food Chem. 1998, 46, 1577. d) T. Hartmann, C. Theuring, T. Beuerle, L.
Ernst, M. S. Singer, E. A. Bernays, J. Chem. Ecol. 2004, 30, 229. e) E. M.
Skoda, G. C. Davis, P. Wipf, Org. Process Res. Dev. 2012, 16, 26.
[16] a) M. Karplus, J. Chem. Phys. 1959, 30, 11. b) R. M. Silverstein, F. X.
Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds,
7th ed.; John Wiley & Sons: New York, 2005; pp 171–172.
[17] For examples of Ni-catalyzed multi-component coupling reactions via
nickellacycles, see: a) H. Hoberg, E. Hernandez, J. Chem. Soc., Chem.
Commun. 1986, 544. b) S. Ogoshi, M.-a. Oka, H. Kurosawa, J. Am. Chem.
Soc. 2004, 126, 11802. c) S. Ogoshi, M. Ueta, T. Arai, H. Kurosawa, J. Am.
Chem. Soc. 2005, 127, 12810. d) S. Ogoshi, T. Haba, M. Ohashi, J. Am.
Chem. Soc. 2009, 131, 10350. e) Y. Hoshimoto, T. Ohata, Y. Sasaoka, M.
Ohashi, S. Ogoshi, J. Am. Chem. Soc. 2014, 136, 15877. For examples of
Brønsted acid to aid the ring opening of nickellacycle, see: f) C.-H. Yeh, R.
P. Korivi, C.-H. Cheng, Angew. Chem. 2008, 120, 4970; Angew. Chem.,
Int. Ed. 2008, 47, 4892. g) A. D. Jenkins, A. Herath, M. Song, J.
Montgomery, J. Am. Chem. Soc. 2011, 133, 14460. h) K. Nakai, Y. Yoshida,
T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2014, 136, 7797.
[18] For DFT studies of nickel-catalyzed reactions, see: a) T. Sperger, I. A.
Sanhueza, I. Kalvet, F. Schoenebeck, Chem. Rev. 2015, 115, 9532. b) E.
P. Jackson, H. A. Malik, G. J. Sormunen, R. D. Baxter, P. Liu, H. Wang, A.-
R. Shareef, J. Montgomery, Acc. Chem. Res. 2015, 48, 1736. c) All
reported free energies are in kcal/mol and calculated using M06/SDD-6-
311+G(d,p)/SMD(toluene)//B3LYP/SDD-6-31G(d) at 373.15 K. d) M. J.
Frisch, et al. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT,
2013. e) Computational details are in the Supporting Information.
[2] M. Johannsen, K. A. Jørgensen, Chem. Rev. 1998, 98, 1689.
[3] For reviews and examples of hydroalkenylation reactions from two alkenes,
see: a) G. Hilt, Eur. J. Org. Chem. 2012, 2012, 4441. b) T. V. RajanBabu,
G. A. Cox, H. J. Lim, N. Nomura; R. K. Sharma; C. R. Smith and A. Zhang,
Hydrovinylation Reactions in Organic Synthesis, in Comprehensive
Organic Synthesis, ed. G. A. Molander and P. Knochel, Elsevier, Oxford,
2nd edn, 2014, Vol. 5, pp. 1582–1620. c) G. Hilt, F.-X. du Mesnil, S. Lüers,
Angew. Chem. 2001, 118, 408; Angew. Chem. Int. Ed. 2001, 40, 387. d)
W.-J. Shi, J.-H. Xie, Q.-L. Zhou, Tetrahedron: Asymmetry 2005, 16, 705. e)
W.-J. Shi, Q. Zhang, J.-H. Xie, S.-F. Zhu, G.-H. Hou, Q.-L. Zhou, J. Am.
Chem. Soc. 2006, 128, 2780. f) A. Zhang, T. V. RajanBabu, J. Am. Chem.
Soc. 2006, 128, 5620. g) C.-Y. Ho, L. He, Angew. Chem. 2010, 122, 9368;
Angew. Chem. Int. Ed. 2010, 49, 9182. h) M. M. P. Grutters, C. Müller, D.
Vogt, J. Am. Chem. Soc. 2006, 128, 7414. i) C.-Y. Ho, C.-W. Chan, L. He,
Angew. Chem. 2015, 127, 4595; Angew. Chem. Int. Ed. 2015, 54, 4512.
[4] a) R. Almansa, D. Guijarro, M. Yus, Tetrahedron: Asymmetry 2008, 19, 603.
b) S. Lou, S. E. Schaus, J. Am. Chem. Soc. 2008, 130, 6922. c) K. Brak, J.
A. Ellman, J. Am. Chem. Soc. 2009, 131, 3850. d) Y. Luo, A. J. Carnell, H.
W. Lam, Angew. Chem. 2012, 124, 6866; Angew. Chem. Int. Ed. 2012, 51,
This article is protected by copyright. All rights reserved.